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1 Communication
Interested parties should subscribe to the SMT-COMP mailing list. Important late-breaking news
and any necessary clarifications and edits to these rules will be announced there, and it is the
primary way in which such announcements will be communicated.

• SMT-COMP mailing list: smt-comp@googlegroups.com

• Sign-up site for the mailing list: https://groups.google.com/g/smt-comp

Additional material will be made available at the competition web site, http://www.smtcomp.org.
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2 Important Dates
April 12 Deadline for new benchmark contributions.

May 31 Final versions of competition tools (e.g., benchmark scrambler) are made available. Bench-
mark libraries are frozen.

June 13 Deadline for first versions of solvers (for all tracks), including information about which
tracks and divisions are being entered, and magic numbers for benchmark scrambling.

June 27 Deadline for final versions of solvers, including system descriptions.

June 30 Opening value of NYSE Composite Index used to compute random seed for competition
tools.

August 10-11 SMT Workshop; end of competition, presentation of results.

3 Introduction
The annual Satisfiability Modulo Theories Competition (SMT-COMP) is held to spur advances in
SMT solver implementations on benchmark formulas of practical interest. Public competitions are
a well-known means of stimulating advancement in software tools. For example, in automated
reasoning, the CASC and SAT competitions for first-order and propositional reasoning tools, re-
spectively, have spurred significant innovation in their fields [5, 13]. Accordingly, researchers are
highly encouraged to submit both new benchmarks and new or improved solvers to raise the level
of competition and advance the state of the art in automated SMT problem solving. More infor-
mation on the history and motivation for SMT-COMP can be found at the competition web site,
http://www.smtcomp.org, and in reports on previous competitions ([1, 2, 3, 4, 9, 10, 11]).

SMT-COMP 2025 is part of the SMT Workshop 2025 (http://smt-workshop.cs.uiowa.edu/
2025/), which is affiliated with SAT 2025 (https://satisfiability.org/SAT25/). The SMT Workshop
will include a block of time to present the results of the competition.

SMT-COMP 2025 will have the following tracks:

1. the Single Query Track (before 2019: Main Track),

2. the Incremental Track (before 2019: Application Track),

3. the Unsat-Core Track,

4. the Model-Validation Track,

5. the Parallel Track.

Within each track there are multiple divisions, where each division uses benchmarks from a
specific group of SMT-LIB logics. We will recognize winners in all tracks. They will be deter-
mined by the number of benchmarks solved (taking into account the weighting detailed in Sec-
tion 7); we will also recognize solvers based on additional criteria.
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The rest of this document, revised from the previous version,1 describes the rules and competi-
tion procedures for SMT-COMP 2025.

As in previous years, we have revised the rules slightly. The principal changes from the previ-
ous competition rules are the following:

• Derived tools. Submitters of a derived tool must also submit the corresponding base tool
for the same track and logics. Rationale: The presence of the base tool in the contest,
even non-competively, provides the best way to assess the improvements contributed by the
derived tool techniques.

• Unsat cores scoring. No point is given for an unsat core such that no solver is capable
to verify it. Rationale: Points shall be awarded to a solver only for verifiably correctly
produced unsat cores.

• Unsat cores time limits. The time limit to verify the unsat cores is increased to the time
taken to generate it. Rationale: It should ensure that solvers have the time to correctly
assess the validity of the generated unsat-core.

• Best overall ranking. We reintroduce with minor modifications the best overall ranking that
had been used until SMT-COMP 2018. Rationale: We want to showcase also universality
of the submitted SMT solvers besides their benefits in the individual divisions.

• Cloud and Parallel tracks. Due to the lack of suitable infrastructure, Cloud track is not
taking place for SMT-COMP 2025. Parallel track is going to be executed on the same
BenchExec-based infrastructure as the other tracks, only on machines with a higher num-
bers of CPU cores. As a result, there is no special submission process for the parallel track
and the submissions should follow the some process as the rest of the competition.

4 Entrants

SMT Solver. A Satisfiability Modulo Theories (SMT) solver that can enter SMT-COMP is a
tool that can determine the (un)satisfiability of benchmarks from the SMT-LIB benchmark library
(https://smtlib.cs.uiowa.edu/benchmarks.shtml).

Portfolio Solver. A portfolio solver is a solver using a combination of two or more SMT solvers
on the same input problem. Portfolio solver are in general not allowed. If you are unsure if your
tool is a portfolio solver according to this definition and you feel that it should be allowed contact
the organizers of the SMT-COMP for clarification.

Wrapper Tool. A wrapper tool is defined as any solver that calls one or more other SMT solvers
(the wrapped solvers) to solve different subtasks (in contrast to portfolio solvers that combine the
result of several SMT solvers on the same task). Examples of such subtasks are preprocessing steps

1Earlier versions of this document include contributions from Clark Barrett, Martin Bromberger, Roberto Brut-
tomesso, David Cok, Sylvain Conchon, David Déharbe, Morgan Deters, Alberto Griggio, Liana Hadarean, Matthias
Heizmann, Antti Hyvarinen, Jochen Hoenicke, Aina Niemetz, Albert Oliveras, Giles Reger, Aaron Stump, and Tjark
Weber.
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or solving a subproblem that belongs to a strict sublogic of the input logic. For example, a solver
using one subsolver to solve the ground abstraction of a quantified problem would be a wrapper
tool. A wrapper tool solving a benchmark of logic A is not allowed to call an SMT solver to
solve a problem for logic A, even if the problem is just a subproblem. The system description of a
wrapper tool must explicitly acknowledge and state the exact version of any solvers that it wraps.
It must further make clear technical innovations by which the wrapper tool expects to improve on
the wrapped solvers.

Derived Tool. A derived tool is defined as any solver that is based on and extends another SMT
solver (the base solver) from a different group of authors. In contrast to a wrapper tool, a derived
tool solving a benchmark of logic A is allowed to call an SMT solver to solve a problem for logic
A. However, it is not allowed to call more than one SMT solver to solve a problem over the input
logic. Examples of derived tools are tools that change the strategy selection for the base solver,
tools that add new preprocessing steps on top of the base solver, tools that add new heuristics or
incomplete procedures to a base solver. The system description of a derived tool must explicitly
acknowledge the solver it is based on and extends. It must further make clear technical innovations
by which the derived tool expects to improve on the original solver. A derived tool must follow the
naming convention [name of base solver]-[my solver name]. Submitters of a derived tool should
also submit the corresponding base tool’s binary for the same track and logics as their derived tool.

SMT Solver Submission. An entrant to SMT-COMP is a solver submitted by its authors via
a pull request to the SMT-COMP GitHub repository https://github.com/SMT-COMP/smt-comp.
github.io/tree/master/submissions. The final solver version needs to be uploaded to Zenodo (https:
//zenodo.org/). In the case of derived tools, the Zenodo submission must include both the derived
tool and the base tool. The solver is an archive that contains the precompiled executable (stati-
cally linked is preferable). It will be executed on a computer that has the same installation as the
following docker image

registry.gitlab.com/sosy-lab/benchmarking/competition-scripts/user:latest

Solver execution. BenchExec (https://github.com/sosy-lab/benchexec) is a framework for reli-
able benchmarking and resource measurement developed by LMU’s Software and Computational
Systems Lab (SoSy-Lab https://www.sosy-lab.org/). The framework can be downloaded and used
locally by anyone. The competition will be executed on a BenchExec cluster owned by SoSy-Lab,
who are kind enough to support our competition with their computing power. To be more precise,
the competition will be run on the 168 apollon nodes of the SoSy-Lab BenchExec cluster (for more
details see https://vcloud.sosy-lab.org/cpachecker/webclient/master/info) and on a 256-processor,
2TB RAM machine for the Parallel Track. It is also possible to locally emulate and test the comput-
ing environment on the competition machines using the following instructions: https://gitlab.com/
sosy-lab/benchmarking/competition-scripts/#computing-environment-on-competition-machines.

Participation in the Competition. For participation in SMT-COMP, the organizers must be in-
formed of the solver’s presence and the tracks and divisions which it enters, by submitting a prop-
erly formatted JSON file to the SMT-COMP GitHub repository.

All instructions for submissions are available at the following URL:

https://smt-comp.github.io/2025/solver submission/
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Note that independent of the tracks, the final solver version must be uploaded to Zenodo (https:
//zenodo.org/), together with the base solver in the case of a derived solver.

System description. As part of the submission, SMT-COMP entrants are required to provide a
short (1-2 pages, excluding references) description of the system, which must explicitly acknowl-
edge any solver it wraps or is based on in case of a wrapper or derived tool (see above). In case
of a wrapper tool, it must also explicitly state the exact version of each wrapped solver. A system
description must further include the following information:

• a list of all (current) authors of the system and their present institutional affiliations,

• the basic SMT solving approach employed,

• in case of a wrapper or derived tool: details of technical innovations by which a wrapper or
derived tool expects to improve on the wrapped solvers or base solver, and

• appropriate acknowledgment of tools other than SMT solvers called by the system (e.g., SAT
solvers) that are not written by the authors of the submitted solver.

A system description should further include the following information (unless there is a good
reason otherwise):

• details of any non-standard algorithmic techniques as well as references to relevant literature
(by the authors or others), and

• a link to a website for the submitted tool.

System descriptions must be submitted by the deadline for first versions of solvers, and will
be made publicly available on the competition website. Organizers will check that they contain
sufficient information and may withdraw a system if its description is not sufficiently updated
upon request. The updates must happen by the deadline for final versions of solvers.

Multiple versions. The intent of the organizers is to promote as wide a comparison among solvers
and solver options as possible. However, to keep the number of solver submissions low, each
team should only provide multiple solvers if they are substantially different. A justification must
be provided for the difference. We strongly encourage the teams to keep the number of solvers
per team per category at at most two. By allowing up to two submissions we want to encourage
the development of new, experimental techniques via an “alternative solver” while keeping the
competition manageable.

Other solvers. The organizers reserve the right to include additional solvers of interest (such as
participants in previous editions), in the competition, e.g., for comparison purposes.

Deadlines
SMT-COMP entrants must be submitted via a pull request as explained above until the end of
June 13, 2025 anywhere on Earth. After this date no new entrants will be accepted. However,
updates to existing entrants via pull requests will be accepted until the end of June 27, 2025
anywhere on Earth.
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We strongly encourage participants to use this grace period solely to address any bugs that may
be identified, rather than adding new features. This is because there may be limited opportunities
for thorough testing using the execution service or other methods after the initial deadline.

The last solver links pushed to the repository at the conclusion of the grace period will be the
ones used for the competition. Versions submitted after this time will not be used. The organizers
reserve the right to start the competition itself at any time after the opening of the New York Stock
Exchange on the day after the deadline for final versions of solvers.

These deadlines and procedures apply equally to all tracks of the competition.

5 Execution of Solvers
Solvers will be publicly evaluated in all tracks and divisions into which they have been entered.
A solver enters a division in a track if it supports at least one logic in this division. A solver
not supporting all logics in a division will not be run on the benchmarks from the unsupported
logics and will be scored as if it returned the result unknown within zero time. All results of
the competition will be made public. Solvers will be made publicly available and it is a minimum
license requirement that (i) solvers can be distributed in this way, and (ii) all submitted solvers may
be freely used for academic evaluation purposes.

5.1 Logistics

Dates of Competition. The bulk of the computation will take place during the weeks leading
up to SMT 2025. Intermediate results will be regularly posted to the SMT-COMP website as
the competition runs. The organizers reserve the right to prioritize certain competition tracks or
divisions to ensure their timely completion, and, under exceptional circumstances, to complete
divisions after the SMT Workshop.

Competition Website. The competition website (www.smtcomp.org) will be used as the main
form of communication for the competition. The website will be used to post updates, link to
these rules and other relevant information (e.g., the benchmarks), and to announce the results. The
website also archives previous competitions.

Tools. The competition uses a number of tools/scripts to run the competition. In the following, we
briefly describe these tools.

• smtcomp. This tool combines the functionality of most of the scripts used in previous years
and more. It is available at https://github.com/SMT-COMP/smt-comp.github.io. Some of its
features are:

– Benchmark Selection. The tool has a command that executes the benchmark selection
policy described on page 13. It takes a seed for the random benchmark selection. The
same seed is used for all tools requiring randomisation.

– Results processing. The tool has commands that process and summarize all the results
from files generated by BenchExec (e.g. compute the number of check sat solved
in incremental from the output of the solver).
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– Scoring. The tool has a command that executes the scoring computation described on
in Section 7. It also includes the scoring computations used in competitions since 2015.

For a full list of the capabilities of the smtcomp tool and an explanation of the main com-
mands see https://github.com/SMT-COMP/smt-comp.github.io/blob/master/README.md

• Scrambler. This tool is used to scramble benchmarks during the competition to ensure that
tools do not rely on syntactic features to identify benchmarks. The scrambler can be found
at https://github.com/SMT-COMP/scrambler.

• Trace Executor. This tool is used in the Incremental Track to emulate an on-line interaction
between an SMT solver and a client application and is available at https://github.com/SMT-
COMP/trace-executor

Input. In the Incremental Track, the trace executor will send commands from an (incremental)
benchmark file to the standard input channel of the solver. In all other tracks, a participating solver
must read a single benchmark file, whose filename is presented as the first command-line argument
of the solver.

Benchmark files are in the concrete syntax of the SMT-LIB format version 2.6, though with
a restricted set of commands. A benchmark file is a text file containing a sequence of SMT-LIB
commands that satisfies the following requirements:

• (set-option ...) The input contains the following set-option commands.

(a) In the Incremental Track, the :print-success option must not be disabled. The trace
executor will send an initial (set-option :print-success true) command to the solver.

(b) In all other tracks, the scrambler will add an initial (set-option :print-success false)
command to the solver.

(c) In the Model-Validation Track, a benchmark file contains a single (set-option :produce-
models true) command as the second command.

(d) In the Unsat-Core Track, a benchmark file contains a single (set-option :produce-
unsat-cores true) command as the second command.

• (set-logic ...)
A (single) set-logic command is the first command after any set-option commands.

• (set-info ...)
A benchmark file may contain any number of set-info commands. During the competition
all set-info commands are removed from the benchmark by the scrambler.

• (declare-sort ...)
A benchmark file may contain any number of declare-sort and define-sort commands. All
sorts declared or defined with these commands must have zero arity.

• (declare-fun ...) and (define-fun ...)
A benchmark file may contain any number of declare-fun and define-fun commands.
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• (declare-datatype ...) and (declare-datatypes ...)
If the logic features algebraic datatypes, the benchmark file may contain any number of
declare-datatype(s) commands.

• (assert ...)
A benchmark file may contain any number of assert commands. All formulas in the file
belong in the declared logic, with any free symbols declared in the file.

• :named
(a) In all tracks except the Unsat-Core Track, named terms (i.e., terms with the :named

attribute) are not used.

(b) In the Unsat-Core Track, top-level assertions may be named.

• (check-sat)
(a) In all tracks except the Incremental Track, there is exactly one check-sat command.

(b) In the Incremental Track, there are one or more check-sat commands. There may also
be zero or more (push 1) commands, and zero or more (pop 1) commands, consistent
with the use of those commands in the SMT-LIB standard.

• (get-unsat-core)
In the Unsat-Core Track, the check-sat command (which is always issued in an unsatisfiable
context) is followed by a single get-unsat-core command.

• (get-model)
In the Model-Validation Track, the check-sat command (which is always issued in a satisfi-
able context) is followed by a single get-model command.

• (exit)
It may optionally contain an exit command as its last command. In the Incremental Track,
this command must not be omitted.

• No other commands besides the ones just mentioned may be used.

The SMT-LIB format specification is available from the “Standard” section of the SMT-LIB web-
site [14]. Solvers will be given formulas only from the divisions into which they have been entered.

Output. In all tracks except the Incremental Track, any success output will be ignored2. Solvers
that exit before the time limit without reporting a result (e.g., due to exhausting memory or crash-
ing) and do not produce output that includes sat, unsat, unknown or other track specific output
as specified in the individual track sections, e.g., unsat cores or models, will be considered to have
aborted. Note that there is no distinction between output and error channel and tools should not
write any message to the error channel because it could be misinterpreted as a wrong result.

2SMT-LIB 2.6 requires solvers to produce a success answer after each set-logic, declare-sort, declare-fun and
assert command (among others), unless the option :print-success is set to false. Ignoring the success outputs
allows for submitting fully SMT-LIB 2.6 compliant solvers without the need for a wrapper script, while still allowing
entrants of previous competitions to run without changes.
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Time and Memory Limits. Each SMT-COMP solver will be executed on a dedicated processor
of a competition machine, for each given benchmark, up to a fixed wall-clock time limit T . The
individual track descriptions on pages 9-11 specify the time limit for each track. Each processor
has 4 cores. Detailed machine specifications are available on the competition web site.

The execution service also limits the memory consumption of the solver processes. We expect
the memory limit per solver/benchmark pair to be on the order of 30 GB.

The limits for Parallel Track are available at https://smt-comp.github.io/2025/parallel-track.
html.

Persistent State. Solvers may create and write to files and directories during the course of an
execution, but they must not read such files back during later executions. This is ensured by
BenchExec by executing each solver with the whole filesystem mounted as read-only with an
overlay writeable layer that is mounted as a RAM disk. Any generated files will be therefore
written to the RAM disk. The used storage is counted into the memory limit. The temporary
overlay layer is deleted after the job is complete. Solvers must not attempt to communicate with
other machines, e.g., over the network.

5.2 Single Query Track
The Single Query Track track will consist of selected non-incremental benchmarks in each of the
competitive divisions. Each benchmark will be presented to the solver as its first command-line
argument. The solver is then expected to report on its standard output channel whether the formula
is satisfiable (sat) or unsatisfiable (unsat). A solver may also report unknown to indicate that
it cannot determine satisfiability of the formula.

Benchmark Selection. See page 13.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.

5.3 Incremental Track
The incremental track evaluates SMT solvers when interacting with an external verification frame-
work, e.g., a model checker. This interaction, ideally, happens by means of an online communica-
tion between the framework and the solver: the framework repeatedly sends queries to the SMT
solver, which in turn answers either sat or unsat. In this interaction an SMT solver is required
to accept queries incrementally via its standard input channel.

In order to facilitate the evaluation of solvers in this track, we will set up a “simulation” of the
aforementioned interaction. Each benchmark represents a realistic communication trace, contain-
ing multiple check-sat commands (possibly with corresponding push 1 and pop 1 commands). It
is parsed by a (publicly available) trace executor, which serves the following purposes:

• simulating online interaction by sending single queries to the SMT solver (through stdin),

• preventing “look-ahead” behaviors of SMT solvers,

• recording time and answers for each command,
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• guaranteeing a fair execution for all solvers by abstracting from any possible crash, misbe-
havior, etc. that might happen in the verification framework.

Input and output. Participating solvers should include a script smtcomp run incremental
(if this is not present the script for the default configuration will be used). This script will be
called without arguments and will be connected to a trace executor, which will incrementally send
commands to the standard input channel of the solver and read responses from the standard output
channel of the solver. The commands will be taken from an SMT-LIB benchmark script that
satisfies the requirements for incremental track scripts given in Section 5.1. Solvers must respond
to each command sent by the trace executor with the answers defined in the SMT-LIB format
specification, that is, with an answer of sat, unsat, or unknown for check-sat commands, and
with a success answer for other commands. Solvers must not write anything to the standard
error channel.

Benchmark Selection. See page 13.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.

Trace Executor. This track will use the trace executor from https://github.com/SMT-COMP/trace-
executor to execute a solver on an incremental benchmark file.

5.4 Unsat-Core Track
The Unsat-Core Track will evaluate the capability of solvers to generate unsatisfiable cores. Per-
formance of solvers will be measured by correctness and size of the unsatisfiable core they provide.

Benchmark Selection. This track will run on a selection of non-incremental unsat benchmarks (as
described on page 13), modified to use named top-level assertions of the form (assert (! t :named
f )).

Input/Output. The SMT-LIB language provides a command (get-unsat-core), which asks a
solver to identify an unsatisfiable core after a check-sat command returns unsat. This unsat
core must consist of a list of all named top-level assertions in the format prescribed by the SMT-
LIB standard. Solvers must respond to each command in the benchmark script with the answers
defined in the SMT-LIB format specification. In particular, solvers that respond unknown to the
check-sat command must respond with an error to the following get-unsat-core command.

Result. The result of a solver is considered erroneous if (i) the response to the check-sat command
is sat or (ii) the returned unsatisfiable core is not unsatisfiable. If the solver replies unsat to
check-sat but gives no response to get-unsat-core, this is considered as no reduction, i.e., as if the
solver would have returned the entire benchmark as an unsat core.

Validation. The organizers will use a selection of SMT solvers (the validation solvers) that par-
ticipate in the Single Query Track of this competition in order to validate if a given unsat core is
indeed unsatisfiable. For each division, the organizers will use only solvers that have been sound
(i.e., they did not produce any erroneous result) in the Single Query Track for this division. The un-
satisfiability of an unsat core is validated if the number of checking solvers whose result is unsat
is strictly greater than the number of validation solvers whose result is sat. In particular, if no
checking solver produces unsat, the unsat core is not validated.

10

https://github.com/SMT-COMP/trace-executor
https://github.com/SMT-COMP/trace-executor


Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair
both for unsatisfiable core generation and for the subsequent validation.

5.5 Model-Validation Track
The Model-Validation Track will evaluate the capability of solvers to produce models for satisfiable
problems. Performance of solvers will be measured by correctness and well-formedness of the
model they provide.

Benchmark Selection. This track has the divisions QF Bitvec, QF DataTypes, QF Equality,
QF Equality+Bitvec, QF Equality+(Non)LinearArith, QF (Non)LinearIntArith, and QF (Non)-
LinearRealArith. This year all divisions with non-linear arithmetic, arrays, and datatypes are ex-
perimental divisions. The track will run on a selection of non-incremental sat benchmarks from
these logics (as described on page 13).

Input/Output. The SMT-LIB language provides a command (get-model) to request a satisfying
model after a check-sat command returns sat. This model must consist of definitions specifying
all and only the current user-declared function symbols, in the format prescribed by the SMT-LIB
standard.

Result. The result of a solver is considered erroneous if the response to the check-sat command
is unsat, if the returned model is not well-formed (e.g. does not provide a definition for all the
user-declared function symbols), or if the returned model does not satisfy the benchmark.

Validation. In order to check that the model satisfies the benchmark, the organizers will use the
model validating tool, Dolmen, which can be built using the smtcomp tool. It expects as model
input a file with the answer to the check-sat command followed by the solver response to the
get-model command. The model validator tool will output

1. VALID for a sat solver response followed by a full satisfying model;

2. INVALID for

• an unsat solver response to check-sat or
• models that do not satisfy the input problem.

3. UNKNOWN for

• no solver output (no response to either both commands or get-model),
• an unknown response to check-sat, or
• malformed models, e.g., partial models.

The new experimental divisions require additional syntax to represent their models. We pro-
pose the new syntax on the SMT-COMP website https://smt-comp.github.io/2024/model.html.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.
The time limit for checking the satisfying assignment is yet to be determined, but is anticipated to
be around 15 minutes of wall-clock time.
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5.6 Parallel Track
The Parallel Track will evaluate the capability of solvers to determine the satisfiability of problems
in a shared-memory parallel computing environment. The track will be experimental.

Benchmark Selection. We will select non-incremental benchmarks from the SMT-LIB divisions
based on the participating solvers. In total 400 instances will be chosen such that their run times
are sufficiently high based on our estimation.

Time Limit. This track will use a wall-clock time limit of 2 minutes per solver/benchmark pair.

6 Benchmarks and Problem Divisions

Divisions. Within each track there are multiple divisions, and each division selects benchmarks
from a specific group of SMT-LIB logics in the SMT-LIB benchmark library.

Competitive Divisions. A division in a track is competitive if at least two substantially different
solvers (i.e., solvers from two different teams) were submitted. Although the organizers may enter
other solvers for comparison purposes, only solvers that are explicitly submitted by their authors
determine whether a division is competitive, and are eligible to be designated as winners. We will
not run non-competitive divisions.

Benchmark sources. Benchmarks for each division will be drawn from the SMT-LIB bench-
mark library. The Single Query Track and Parallel Track will use a subset of all non-incremental
benchmarks and the Incremental Track will use a subset of all incremental benchmarks. The Unsat-
Core Track will use a selection of non-incremental unsat benchmarks and more than one top-level
assertion, modified to use named top-level assertions. The Model-Validation Track will use a se-
lection of non-incremental benchmarks with status sat from logics QF BV, QF IDL, QF RDL,
QF LIA, QF LRA, QF LIRA, QF UF, QF UFBV, QF UFIDL, QF UFLIA, QF UFLRA. To de-
termine whether a benchmark is sat or unsat, a combination of the benchmark’s status and the
result of the Single Query Track will be used.

New benchmarks. The deadline for submission of new benchmarks is April 12, 2025. The
organizers, in collaboration with the SMT-LIB maintainers, will be checking and curating these
until April 30, 2025.

The SMT-LIB maintainers intend to make a new release of the benchmark library publicly
available on or close to this date.

Benchmark demographics. The set of all SMT-LIB benchmarks in the logics of a given division
can be naturally partitioned to sets containing benchmarks that are similar from the user commu-
nity perspective. Such benchmarks could all come from the same application domain, be generated
by the same tool, or have some other obvious common identity. The organizers try to identify a
meaningful partitioning based on the directory hierarchy in SMT-LIB. In many cases the hierarchy
consists of the top-level directories each corresponding to a submitter, who has further imposed a
hierarchy on the benchmarks. The organizers believe that the submitters have the best informa-
tion on the common identity of their benchmarks and therefore partition each logic in a division
based on the bottom-level directory imposed by each submitter. These partitions are referred to as
families.
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Benchmark selection. The competition will use a large subset of SMT-LIB benchmarks, with
some guarantees on including new benchmarks, using the following selection process:

1. Remove inappropriate benchmarks. The organizers may remove benchmarks that are deemed
inappropriate or uninteresting for competition, or cut the size of certain benchmark families
to avoid their over-representation. SMT-COMP attempts to give preference to benchmarks
that are “real-world,” in the sense of coming from or having some intended application out-
side SMT.

2. Remove easy / uninteresting benchmarks. For the following tracks, all benchmarks that can
be considered as easy or uninteresting based on the following criteria will be removed.

• Single Query Track. All benchmarks that were solved by all solvers (including non-
competitive solvers) in less than one second in the corresponding track in 2018–2024.

• Unsat-Core Track. All benchmarks with only a single assert command.

3. For the Unsat-Core Track, all benchmarks with status sat are removed. We further remove
benchmarks with status unknown for which no sound solver reported them to be unsat.
For the Model-Validation Track, all benchmarks with status unsat are removed, as well as
benchmarks with status unknown for which no sound solver reported them to be sat.

In case of a dispute (some solver marks a benchmark as sat and some other solver as
unsat), the benchmark may be retained in the selection.

4. Cap the number of instances in a division. The number of benchmarks in a division based
on the size of the corresponding logics in SMT-LIB will be limited as follows. Let n be
the number of benchmarks in an SMT-LIB logic, then the number of chosen benchmarks is
min(n,max(300, 50n/100)):

(a) if n ≤ 300, all instances will be selected;

(b) if 300 < n ≤ 600, a subset of 300 instances from the logic will be selected;

(c) and if n > 600, 50% of the benchmarks of the logic will be selected.

The selection process in cases 4b and 4c above will guarantee the inclusion of new benchmarks by
first picking randomly one benchmark from each new benchmark family. The rest of the bench-
marks will be chosen randomly from the remaining benchmarks using a uniform distribution. The
benchmark selection script will be publicly available at https://github.com/SMT-COMP/smt-comp.
github.io and will use the same random seed as the rest of the competition. The set of benchmarks
selected for the competition will be published when the competition begins.

Heats. Since the organizers at this point are unsure how long the set of benchmarks may take
(which will depend also on the number of solvers submitted), the competition may be run in heats.
For each track and division, the selected benchmarks may be randomly divided into a number of
(possibly unequal-sized) heats. Heats will be run in order. If the organizers determine that there
is adequate time, all heats will be used for the competition. Otherwise, incomplete heats will be
ignored.
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Benchmark scrambling. Benchmarks will be slightly scrambled before the competition, using a
simple benchmark scrambler available at https://github.com/SMT-COMP/scrambler. The bench-
mark scrambler will be made publicly available before the competition. Naturally, solvers must
not rely on previously determined identifying syntactic characteristics of competition benchmarks
in testing satisfiability. Violation of this rule is considered cheating.

Pseudo-random numbers. Pseudo-random numbers used, e.g., for the creation of heats or the
scrambling of benchmarks, will be generated using the standard C library function random(),
seeded (using srandom()) with the sum, modulo 230, of the integer numbers provided in the
system submissions (see Section 4) by all SMT-COMP entrants other than the organizers’. Addi-
tionally, the integer part of one hundred times the opening value of the New York Stock Exchange
Composite Index on the first day the exchange is open on or after the date specified in the timeline
(Section 2) will be added to the other seeding values. This helps provide transparency, by guaran-
teeing that the organizers cannot manipulate the seed in favor of or against any particular submitted
solver.

7 Scoring

7.1 Benchmark scoring
The parallel benchmark score of a solver is a tuple ⟨e, n, aw ,w , ac, c⟩ with

• e ∈ {0, 1} number of erroneous results (usually e = 0)
• 0 ≤ n ≤ N number of correct results (resp. reduction for the Unsat-Core Track)
• aw ∈ [0 ,T ] actual wall-clock time in seconds (real-valued)
• w ∈ [0, T ] wall-clock time score in seconds (real-valued)
• ac ∈ [0 ,mT ] actual CPU time in seconds (real-valued)
• c ∈ [0,mT ] CPU time score in seconds (real-valued)

Error Score (e). For the Single Query Track, Incremental Track and Parallel Track, e is the number
of returned statuses that disagree with the given expected status (as described above, disagreements
on benchmarks with unknown status lead to the benchmark being disregarded). For the Unsat-Core
Track, e includes, in addition, the number of returned unsat cores that are not, in fact, unsatisfiable
(as validated by a selection of other solvers selected by organizers). For the Model-Validation
Track, e includes, in addition, the number of returned models that are not full satisfiable models.

Correctly Solved Score (n). For the Single Query Track, Incremental Track, Model-Validation
Track, and Parallel Track, N is defined as the number of check-sat commands, and n is defined
as the number of correct results. For the Unsat-Core Track, N is defined as the number of named
top-level assertions, and n is defined as the reduction, i.e., the difference between N and the size
of the unsat core.

Actual Wall-Clock Time (aw). The actual (real-valued) wall-clock time in seconds, until time
limit T or the solver process terminates.

Wall-Clock Time Score (w). For the Single Query Track, Unsat-Core Track, Model-Validation
Track and Parallel Track, the wall-clock time score w is the same as the actual (real-valued) wall-
clock time aw , except that it is zero if the benchmark was not correctly solved within the time
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limit T , i.e., w = 0 if e = 1, the process did not terminate within the time limit T , or it did return
unknown or an unknown result. For the Incremental Track, the wall-clock time score w is the
(real-valued) wall-clock time in seconds until the process returned the last time sat/unsat within
the time limit; this means especially that w = 0 if the process never returned sat/unsat within the
time limit.

Actual CPU Time (ac). The (real-valued) CPU time in seconds, measured across all m cores until
time limit mT is reached or the solver process terminates.

CPU Time Score (c). For the Single Query Track, Unsat-Core Track, Model-Validation Track,
and Parallel Track, the CPU time score c is the same as the actual (real-valued) CPU time ac,
except that it is zero if the benchmark was not correctly solved within the time limit mT , i.e.,
c = 0 if e = 1, the process did not terminate within the time limit mT , or it did return unknown
or an unknown result. For the Incremental Track, the CPU time score c is the (real-valued) CPU
time in seconds until the process returned the last time sat/unsat within the time limit; this means
especially that c = 0 if the process never returned sat/unsat within the time limit.

7.1.1 Sequential Benchmark Score

The parallel score as defined above favors parallel solvers, which may utilize all available proces-
sor cores. To evaluate sequential performance, we derive a sequential score by imposing a virtual
CPU time limit equal to the wall-clock time limit T . A solver result is taken into consideration
for the sequential score only if the solver process terminates within this CPU time limit. More
specifically, for a given parallel performance ⟨e, n, aw , w, ac, c⟩, the corresponding sequential per-
formance is defined as ⟨eS, nS, cS⟩, where

• eS = 0, nS = 0, and cS = 0 if c > T ;

• eS = e, nS = n, and cS = c otherwise.3

7.1.2 Single Query Track and Parallel Track

For the Single Query Track and Parallel Track, the error score e and the correctly solved score n
are defined as

• e = 0 and n = 0 if the solver

– aborts without a response, or
– the result of the check-sat command is unknown,

• e = 0 and n = 1 if the result of the check-sat command is sat or unsat and either

– agrees with the benchmark status,
– or the benchmark status is unknown,4

3Under this measure, a solver should not benefit from using multiple processor cores. Conceptually, the sequential
performance should be (nearly) unchanged if the solver was run on a single-core processor, up to a time limit of T .

4If the benchmark status is unknown, we thus treat the solver’s answer as correct. Disagreements between different
solvers on benchmarks with unknown status are governed in Section 7.2.
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• e = 1 and n = 0 if the result of the check-sat command is incorrect.

Note that a (correct or incorrect) response is taken into consideration even when the solver process
terminates abnormally, or does not terminate within the time limit. Solvers should take care not to
accidentally produce output that contains sat or unsat.

7.1.3 Incremental Track

An application benchmark may contain multiple check-sat commands. Solvers may partially solve
the benchmark before timing out. The benchmark is run by the trace executor, measuring the total
time (summed over all individual commands) taken by the solver to respond to commands.5 Most
time will likely be spent in response to check-sat commands, but assert, push or pop commands
might also entail a reasonable amount of processing. For the Incremental Track, we have

• e = 1 and n = 0 if the solver returns an incorrect result for any check-sat command within
the time limit,

• otherwise, e = 0 and n is the number of correct results for check-sat commands returned by
the solver before the time limit is reached.

7.1.4 Unsat-Core Track

For the Unsat-Core Track, the error score e and the correctly solved score n are defined as

• e = 0 and n = 0 if the solver

– aborts without a response to check-sat, or
– the result of the check-sat command is unknown,
– the result of the get-unsat-core command is not wellformed.

• e = 1 and n = 0 if the result is erroneous according to Section 5.4,

• otherwise, e = 0 and n is the reduction in the number of formulas, i.e., n = N minus the
number of formula names in the reported unsatisfiable core.

7.1.5 Model-Validation Track

For the Model-Validation Track, the error score e and the correctly solved score n are defined as

• e = 0 and n = 0 if the result is UNKNOWN according to the output of the model validating
tool described in Section 5.5,

• e = 1 and n = 0 if the result is INVALID according to the output of the model validating
tool described in Section 5.5,

• otherwise, e = 0 and n = 1.
5Times measured by the execution service may include time spent in the trace executor. We expect that this time

will likely be insignificant compared to time spent in the solver, and nearly constant across solvers.
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7.2 Division scoring
For each track and division, we compute a division score based on the parallel performance of a
solver (the parallel division score). For the Single Query Track, Unsat-Core Track and Model-
Validation Track we also compute a division score based on the sequential performance of a solver
(the sequential division score). Additionally, for the Single Query Track, we further determine
three additional scores based on parallel performance: The 24-second score will reward solving
performance within a time limit of 24 seconds (wall clock time), the sat score will reward (parallel)
performance on satisfiable instances, and the unsat score will reward (parallel) performance on
unsatisfiable instances. Finally, in divisions composed by more than one logic, all the above scores
will be presented not only for the overall division but also for each logic composing the division.

Sound Solver. A solver is sound on benchmarks with known status for a division if its parallel
performance (Section 7.1) is of the form ⟨0, n, aw ,w , ac, c⟩ for each benchmark in the division,
i.e., if it did not produce any erroneous results.

Disagreeing Solvers. Two solvers disagree on a benchmark if one of them reported sat and the
other reported unsat.

Removal of Disagreements. Before division scores are computed for the Single Query Track,
benchmarks with unknown status are removed from the competition results if two (or more) solvers
that are sound on benchmarks with known status disagree on their result. Only the remaining
benchmarks are used in the following computation of division scores (but the organizers will report
disagreements for informational purposes).

7.2.1 Parallel Score

The parallel score for a division is computed for all tracks. It is defined for a participating solver
in a division with M benchmarks as the sum of all the individual parallel benchmark scores:∑

b∈M

⟨eb, nb, aw b ,wb , acb , cb⟩.

A parallel division score ⟨e, n, aw , w, ac, c⟩ is better than a parallel division score
⟨e′, n′, aw ′, w′, ac ′, c′⟩ iff e < e′ or (e = e′ and n > n′) or (e = e′ and n = n′ and w < w′) or
(e = e′ and n = n′ and w = w′ and c < c′). That is, fewer errors takes precedence over more
correct solutions, which takes precedence over less wall-clock time taken, which takes precedence
over less CPU time taken.

7.2.2 Sequential Score

The sequential score for a division is computed for all tracks except the Incremental Track and
Parallel Track. 6. It is defined for a participating solver in a division with M benchmarks as the

6Since incremental track benchmarks may be partially solved, defining a useful sequential performance for the in-
cremental track would require information not provided by the parallel performance, e.g., detailed timing information
for each result. Due to the nature of Parallel Track, we will not consider the sequential scores

17



sum of all the individual sequential benchmark scores:∑
b∈M

⟨esb, ns
b, aw

s
b, w

s
b , ac

s
b, c

s
b⟩.

A sequential division score ⟨es, ns, cs⟩ is better than a sequential division score ⟨es′ , ns′ , cs
′⟩ iff

es < es
′ or (es = es

′ and ns > ns′) or (es = es
′ and nS = ns′ and cs < cs

′). That is, fewer errors
takes precedence over more correct solutions, which takes precedence over less CPU time taken.

We will not make any comparisons between parallel and sequential performances, as these are
intended to measure fundamentally different performance characteristics.

7.2.3 24-Seconds Score (Single Query Track)

The 24-seconds score for a division is computed for the Single Query Track as the parallel division
score with a wall-clock time limit T of 24 seconds.

7.2.4 Sat Score (Single Query Track)

The sat score for a division is computed for the Single Query Track as the parallel division score
when only satisfiable instances are considered.

7.2.5 Unsat Score (Single Query Track)

The unsat score for a division is computed for the Single Query Track as the parallel division score
when only unsatisfiable instances are considered.

7.3 Competition-Wide Recognitions
Between 2014 and 2018, the SMT competition had used a competition-wide scoring that empha-
sized the breadth of solver participation by summing up a score for each (competitive) division a
solver competed in. This was discontinued in 2019 in favor of biggest lead and largest contribution
rankings to avoid favoring solvers that entered into a large number of divisions. The two rankings
have been used since.

For SMT-COMP 2025, we reintroduce the best overall ranking besides the two rankings to
showcase both the overall qualities of the solvers and also their strengths in individual divisions.

7.3.1 Best Overall Ranking

This ranking aims to select the solver that is most universal, i.e., solved the largest number of
benchmarks after taking the division sizes into account.

Let ⟨eD, nD, awD, wD, acD, cD⟩ be the parallel division score for the given solver in the di-
vision D (for a given scoring system, e.g., number of correct results or reduction). Let ND be
total number of benchmarks in division D that were used in the competition. The normalized
correctness score nnD of the solver in the division D is defined as

nnD =


(

nD

ND

)2

, if eD = 0,

−2, if eD > 0.
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The overall score7 of the solver is then sum of nnD · log10ND over all competitive divisions D
into which the solver has entered. The solvers are ranked based on the overall score and ties are
resolved using the CPU time in sequential scoring and wall-clock time in parallel scoring.

7.3.2 Biggest Lead Ranking

This ranking aims to select the solver that won by the most in some competitive division. The
winners of each division are ranked by the distance between them and the next competitive solver
in that division.

Let nD
i be the correctness score of the ith solver (for a given scoring system e.g. number of

correct results or reduction) in division D. The correctness rank of division D is given as

nD
1 + 1

nD
2 + 1

Let cDi be the CPU time score of the ith solver in division D. The CPU time rank of division D is
given as

cD2 + 1

cD1 + 1

Let wD
i be the wall-clock time score of the ith solver in division D. The wall-clock time rank of

division D is given as
wD

2 + 1

wD
1 + 1

The biggest lead winner is the winner of the division with the highest (largest) correctness rank.
In case of a tie, the winner is determined as the solver with the higher corresponding CPU (resp.
wall-clock) time rank for sequential (resp. parallel) scoring. This can be computed per scoring
system.

7.3.3 Largest Contribution Ranking

This ranking aims to select the solver that uniquely contributed the most in some division, or to
put another way, the solver that would be most missed. This is achieved by computing a solver’s
contribution to the virtual best solver for a division.

Let ⟨es, ns, aw s, ws, acs, cs⟩ be the parallel division score for solver s (for a given scoring
system, i.e., n is either number of correct results or reduction). If the division error score es >

7Rationale: The goal of the square is to give some advantage to solvers that complete close to all benchmarks in
a division. Therefore, a solver still needs to do reasonably well compared to winners to be able to catch up purely by
the breadth of participation, i.e., the number of logics it supports.

The constant penalty for errors reflects the fact that any error in a particular division renders a solver untrustworthy
for that division. Moreover, the value 2 subtracts an equivalent of two other completely solved divisions and balances
the community’s strong interest in reliable and thoroughly tested solvers against the risk of stifling innovation. Entering
a possibly buggy solver that can solve all benchmarks has a positive expected value if the probability of some soundness
bug in each of the divisions is below 1

1+2 ≈ 33%.
The log scaling adjusts the scores for the wide variety of numbers of benchmarks in different divisions. It seems a

reasonable compromise between linearly combining numbers of benchmarks, which would overweigh large divisions,
and simply summing the fraction of benchmarks solved, which would overweigh small divisions.
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0, then solver s is considered unsound and excluded from the ranking. If the number of sound
competitive solvers S in a division D is |S| ≤ 2, the division is excluded from the ranking.

Let ⟨esb, ns
b, aw

s
b, w

s
b , ac

s
b, c

s
b⟩ be the parallel benchmark score for benchmark b and solver s (for

a given scoring system). The virtual best solver correctness score for a division D with competitive
sound solvers S is given as

vbssn(D,S) =
∑
b∈D

max{ns
b | s ∈ S and ns

b > 0}

where the maximum of an empty set is 0 (i.e., no contribution if a benchmark is unsolved).
The virtual best solver CPU time score vbssc and the virtual best solver wall-clock time score

vbssw for a division D with competitive sound solvers S is given as

vbssc(D,S) =
∑
b∈D

min{csb | s ∈ S and ns
b > 0}

vbssw(D,S) =
∑
b∈D

min{ws
b | s ∈ S and ns

b > 0}

where the minimum of an empty set is 1200 seconds (no solver was able to solve the benchmark).
In other words, for the single query track, vbssc(D,S) and vbssw(D,S) is the smallest amount

of CPU time and wall-clock time taken to solve all benchmarks solved in division D using all
sound competitive solvers in S.

Let S be the set of competitive solvers competing in division D. The correctness rank vbssn,
the CPU time rank vbssc and the wall-clock time rank vbssw of solver s ∈ S in division D are then
defined as

1− vbssn(D,S − s)

vbssn(D,S)
1− vbssc(D,S)

vbssc(D,S − s)
1− vbssw(D,S)

vbssw(D,S − s)

i.e., the difference in virtual best solver score when removing s from the computation.
These ranks will be numbers between 0 and 1 with 0 indicating that s made no impact on the

vbss and 1 indicating that s is the only solver that solved anything in the division. The ranks for a
division D in a given track will be normalized by multiplying with nD

N
, where nD corresponds to

the number of competitive solver/benchmark pairs in division D and N being the overall number
of competitive solver/benchmark pairs of this track.

The largest contribution winner is the solver across all divisions with the highest (largest)
normalized correctness rank. Again, this can be computed per scoring system. In case of a tie,
the winner is determined as the solver with the higher corresponding normalized CPU (resp. wall-
clock) time rank for sequential (resp. parallel) scoring.

7.4 Other Recognitions
The organizers will also recognize the following contributions:

• New entrants. All new entrants (to be interpreted by the organisers, but broadly a signifi-
cantly new tool that has not competed in the competition before) that beat an existing solver
in some division will be awarded special commendations.
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• Benchmarks. Contributors of new benchmarks used in the competition will receive a special
mention.

These recognitions will be announced at the SMT workshop and published on the competition
website. The organizers reserve the right to recognize other outstanding contributions that become
apparent in the competition results.

8 Judging
The organizers reserve the right, with careful deliberation, to remove a benchmark from the com-
petition results if it is determined that the benchmark is faulty (e.g., syntactically invalid in a way
that affects some solvers but not others); and to clarify ambiguities in these rules that are discov-
ered in the course of the competition. Authors of solver entrants may appeal to the organizers
to request such decisions. Organizers that are affiliated with solver entrants will be recused from
these decisions. The organizers’ decisions are final.
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