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Abstract—In this note, we introduce a Reinforcement Learn-
ing guided SMT solver, dubbed Z3-alpha, that supports
QF NonLinearIntArith, QF NonLinearRealArith and QF Strings.
Z3-alpha uses a framework that combines Reinforcement Learn-
ing with logical reasoning in a corrective feedback loop, with the
goal of dynamically constructing a strategy for any given input
SMT formula.

I. SYSTEM OVERVIEW

Z3-alpha is a Reinforcement Learning (RL) Guided SMT
Solver, which dynamically constructs, in expectation, the best
strategy for a given input query by minimizing some objective
function (typically, solver run time). The term strategy refers
to a solving algorithm that is constructed by sequencing indi-
vidual tactics as steps in the said strategy. A tactic is a well-
defined and implemented reasoning step in an SMT solver,
such as simplify (apply simplificaton rules), nla2bv (convert
a nonlinear arithmetic problem into a bit-vector problem),
smt (the core DPLL(T) SMT solver) [1]. Z3-alpha uses an
RL-Logic framework that combines deep Monte-Carlo Tree
Search (MCTS) and logical reasoning in a corrective feedback
loop. The RL component guides the search for the optimal
strategy and the logical part provides corrective feedback.
The combined framework enables the solver to learn how to
adaptively select the best tactic for a given class of formulas.

Z3-alpha is a derived solver based on Z3 [2], i.e., it selects
tactics from Z3’s built-in ones. For the QF Strings division,
Z3-alpha also additionally chooses from three tactics from our
string constraint solver Z3str4 [3]: Z3str3, LAS (the length
abstraction solver), and string-rewrite-extension. Z3str3 is an
arrangement based string solver, which is integrated into Z3.
LAS is a CEGAR-style algorithm that can quickly solve
certain string formulas based on abstractions and refinements
of integer constraints implied by string equations. The string-
rewrite-extension tactic implements a set of rewrite rules in
the string theory.

Although Z3-alpha can dynamically construct strategies for
any given input, the version we submitted to SMT-COMP
2023 is a preliminary one that uses a pre-trained “best” static
strategies that we could find using our RL-Logic framework
during experimentation over the SMT-COMP benchmarks.
The full version of Z3-alpha is available at https://github.
com/JohnLyu2/AlphaSMT, which requires a list of Python

packages with specific versions. Some of these packages are
not available on StarExec, the SMT-COMP running platform,
and we currently do not have the bandwidth to support the
compatibility of the full version on StarExec.

II. THE COMBINED REINFORCEMENT LEARNING AND
LOGIC ARCHITECTURE

The deep MCTS algorithm was first introduced in Alp-
haZero [4], a Go playing program. We have made important
changes to adapt the AlphaZero algorithm to the SMT tactic
selection problem, in terms of how MCTS is used, the neural
network architecture, as well as corrective feedback via logical
reasoning.

In our method, a deep neural network, fθ, serves as both
the value function and the policy, evaluating state-action pairs
and making tactic decisions (the choice function over tactics).
The goal of the RL algorithm is to train a neural network
fθ∗ that approximates the optimal policy and value function.
The training happens by iterations. In each iteration, multiple
sampling episodes are executed to collect neural network
training samples. Each episode works on one formula φ picked
from the training benchmark set, and sequentially applies
tactics until the formula is solved, or the episode time exceeds
a threshold timeout. The tactic applied at each step is selected
by a lookahead search algorithm, MCTS. The selected tactic is
executed by the base logical solver Z3. This logical reasoning
step provides feedback to the RL agent in two ways: (1)
state transitions caused by formula rewrites; (2) a reward R
collected at the end of the episode, awarding effective and
efficient tactic sequences. This reward is considered the sample
return for the episode and is used to update the value function,
i.e., the neural network fθ.

Specifically, at the end of an episode, for every step t in
this episode, one neural network sample dt = (st, πt, R) is
generated, where st is the solving state representation, and πt

is the tactic probability distribution output by the MCTS, and
as stated above R is the reward. When all sampling episodes
of an iteration end, the neural network fθ is trained upon the
training samples from all episode steps.

The rationale behind this framework is as follows: MCTS,
which is a lookahead technique, can potentially make better
selections over previous ones, i.e., it is a policy improvement
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step; the sampling episodes, which enable the neural network
to make better value predictions based on logical feedback,
are doing the policy evaluation. Thus, each training iteration
is considered as one policy iteration loop. After an appropriate
number iterations, the neural network is expected to be closer
to the optimal policy and value function for a given class of
input formulas.

The use of RL in solvers is not entirely new [5]. It
was perhaps first used by Lagoudakis and Littman [6] and
then achieved superior performance in MapleSAT [7], both
for branching heuristics. Following works either use RL to
improve one aspect of solver heuristics [8], or to select
among different solver algorithms [9], [10]. Our proposed
framework continues this line of research, and tackles the
problem which is more comprehensive than just improving one
specific heuristic and more granular than algorithm selection.

III. MCTS SEARCH ALGORITHM

MCTS is a decision-time planning algorithm, which helps
make a better decision at a given environment state by sim-
ulating multiple paths from this state [11]. The selection of
the simulated paths are guided by both a prior policy and
the rewards collected from previous simulations, in order to
keep a balance between exploiting expected more rewarding
trajectories and exploring less visited ones.

As stated earlier, MCTS serves as a lookahead search at
each step t of the sampling episodes, in order to improve
the tactic selection at t. MCTS takes two inputs, namely,
the current state st and the prior policy fθ. By simulating
paths starting at st, MCTS keeps updating its estimation of
how rewarding it is to take each action from st. After many
simulation experiences, MCTS outputs a probability distribu-
tion recommending tactics to apply at st, π(·|st) = αθ(st),
based on the estimations collected from the simulations. This
recommended distribution is assumed to be a better policy than
prior policy given by fθ.

IV. DEEP NEURAL NETWORK

The deep neural network fθ with parameters θ takes as
input a state embedding x, and outputs a tactic probability
distribution p and a value estimation v, i.e., p, v = fθ(x). The
neural network uses transformers [12] to encode the time series
relationship between tactic applications. The neural network
also applies techniques such as batch normalisation [13],
dropout, and ReLU activation. The training aims to adjust the
neural network parameters θ, so that the differences between
the neural network predicted distribution p and the MCTS
output π, and between the predicted v and the recorded R,
are minimized.

V. LOGICAL CORRECTIVE FEEDBACK

Each tactic application is a logical reasoning step, which
is executed by the base solver Z3. Tactics rewrite formulas,
thus resulting in the state transition in the RL problem.
Since the RL agent makes decisions based on the state it is
in now, tactic applications which change the state, provide

feedback to the agent in terms of how it should proceed.
Moreover, the application of a strategy, i.e., a sequence of
tactics, on a formula generates the reward (whether the formula
is solved in an efficient manner) in our context. Therefore,
logical reasoning plays the role of the environment in the RL
modelling, directing and evaluating the agent actions.
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