
NRA-LS at the SMT Competition 2023

Minghao Liu⋆1,3, Kunhang Lv⋆4, Fuqi Jia1,3, Rui Han1,3, Yu Zhang2,3,
Pei Huang5, Feifei Ma1,2,3, and Jian Zhang1,3

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 Laboratory of Parallel Software and Computational Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China
4 School of EECS, Peking University, Beijing, China

5 Stanford University, Stanford, USA
{liumh,maff}@ios.ac.cn

1 Introduction

SMT solving for quantifier-free formulas in non-linear real arithmetic (QF NRA)
is important in many applications. State-of-the-art SMT solvers have made great
progress to solve this problem. However, the time and memory usage of them on
some hard instances may be unacceptable, especially when high-order polynomi-
als appear in the formula. NRA-LS is an SMT solver for QF NRA theory, which
can improve the performance on some high-order satisfiable instances through a
local search (LS) algorithm. NRA-LS wraps cvc5-1.0.51 as the backend solver.

2 Architecture of NRA-LS

The framework of NRA-LS is shown in Algorithm 1. At the beginning, the
maximum order of polynomials in the formula is computed, and those formulas
will be handled specially if they contain high-order polynomials, which means
the order is larger than 10 in the implementation.

Initial model generation. NRA-LS tries to assign values to the variables,
evaluates the level to which the assertions are satisfied, and adjusts the values.
Then the top-k assignments are output as initial models. However, these ‘models’
cannot satisfy all the assertions in most cases, so NRA-LS makes fewer variables
fixed and tests the satisfiability of a set of sub-formulas.

Sub-formulas testing. Given an initial model, NRA-LS calls back-end solver
to test if the model is valid by appending additional assertions to the original
formula. If unsat is returned, NRA-LS will reduce the number of fixed variables,
and test the new sub-formula iteratively until getting sat or the time limit is
exceeded. If sat is returned, the original formula is also satisfiable.

⋆ The first two authors contributed equally to this work.
1 https://github.com/cvc5/cvc5

2 M. Liu et al.

Algorithm 1 Framework of NRA-LS

Input: an SMT(QF NRA) formula ϕ
Output: sat/unsat/unknown

1: if ϕ contains high-order polynomial then
2: S1, S2, . . . , Sk ← generate init model(ϕ);
3: for i from 1 to k do
4: while |Si| ≠ 0 do
5: Si ← generate partial assignment(ϕ, Si);
6: res← run back end solver(ϕ ∧ Si);
7: if res = sat then
8: return res;
9: else if res = unsat then
10: continue;
11: else
12: break;
13: end if
14: end while
15: end for
16: end if
17: return run back end solver(ϕ);

Time slots assignment. NRA-LS assigns the time slots into three parts. Sup-
pose the time limit to solve a single formula is T . First, it takes 5%T to run
back-end solver on the original formula, which aims to exclude easy benchmarks.
Next, the time limit for each attempt that tests a sub-formula is set to 2.5%T .
Finally, if the result cannot be determined, the rest of the time is assigned to
run back-end solver on the original formula.

3 What’s New in 2023

In this year, we have focused on strengthening the algorithm for generating the
initial models and improving the construction strategy of sub-formulas. With
the help of cvc5’s ability to generate models for satisfiable formulas, we also
participated in the model validation track this year.

Furthermore, according to the latest rules of SMT-COMP, NRA-LS has been
classified as a derived tool and the name has been changed accordingly to
cvc5-NRA-LS.

4 Project Website

For more information and resources of NRA-LS, please refer to our website:

https://github.com/minghao-liu/NRA-LS

