
Z3-Owl at SMT-COMP 2023

Xinkai Ma1, Jiahui Sun1, Siyuan Zhu1, Peisen Yao1, Rui Chang1, Yongwang
Zhao1, Wensheng Tang2, and Charles Zhang2

1 Zhejiang University
{maxinkai, jasonj, syuanz, pyaoaa, crix1021, zhaoyw}@zju.edu.cn

2 The Hong Kong University and Science and Technology
{wtangae, charlesz}@cse.ust.hk

Abstract. In this report, we present Z3-Owl, a derived Satisfiability
Modulo Theories (SMT) solver for the theories of bit-vectors, floating-
points, arrays, uninterpreted functions, linear real arithmetic, linear inte-
ger arithmetic, and their combinations. We discuss the selected features
for its participation in SMT-COMP 2023.

1 Introduction

Z3-Owl is a derived SMT solver based on Z3 [1] (version 4.8.11) and PySAT [4]
(version 0.1.8.dev1). It participates in the single query and parallel tracks in the
following divisions:

– Single Query Track : QF BV, QF UFBV, QF ABV, QF AUFBV, QF FP,
QF BVFP.

– Parallel Track : QF BV, QF FP.

For more information, readers can refer to the following Web site.

https://z3-owl.github.io/

2 Features

In this section, we present the features of Z3-Owl on the above divisions.

2.1 Sequential Solving

Z3-Owl solves bit-vector and floating points formulas following the eager ap-
proach to SMT solving. Consider an input formula φ, Z3-Owl works as follows:

– First, we use the tactic system of Z3 to customize a word-level pre-processing
strategy. The strategy can either solve φ directly or generate a simplified
formula φ′.

– Second, if the input formula is not solved by the first phase, we use the
“bit-blast” tactic of Z3 that translates the simplified formula into a Boolean
formula φbool.



2 Authors Suppressed Due to Excessive Length

Table 1. Used SAT engine and its version for sequential solving.

Theory SAT engine Version

QF BV CaDiCaL rel-1.0.3
QF UFBV Glucose 3.0
QF ABV Minisat 2.2
QF AUFBV Glucose 3.0
QF FP Minisat 2.2
QF BVFP Lingeling bbc-923080-160707

– Finally, we solve te Boolean formula φbool via an off-the-shelf SAT solver
through PySAT, which wrappers a set of state-of-the-art SAT engines.

Compared to Z3, our solver uses new word-level pre-processing strategies and
allows for more diversified SAT engines. Specifically, Table 1 lists the configura-
tions we use for this competition.

2.2 Parallel Solving

We adopt the portfolio approach for parallel solving. In a bit-blasting-based
solver, the effectiveness of both the word-level pre-processing and SAT solving
engine significantly contributes to the solver’s performance [2]. Thus, our ap-
proach utilizes a two-layered design.

– First, we employs Z3’s tactic system to establish a suite of parallel pre-
processing strategies that operate on an input formula, with the aim of
either solving the formula directly or producing a simplified variant of it.
The resulting simplified formulas are then transformed into distinct Boolean
formulas via bit-blasting.

– Second, to solve the Boolean formulas, we use pySAT to concurrently call
multiple SAT engines and choose the result returned by the first engine.

In summary, our solver aims to improve the overall performance by utilizing
a combination of pre-processing strategies and multiple SAT engines, following
the idea of swarm verification [3].

Acknowledgement

We are grateful to the developers of Z3, pySAT, CaDiCaL, Glucose, MiniSAT,
and Lingeling for making their systems available for open use.

References

1. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Tools and Algorithms for
the Construction and Analysis of Systems: 14th International Conference, TACAS



Z3-Owl at SMT-COMP 2023 3

2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings
14. pp. 337–340. Springer (2008)

2. Dutertre, B.: An empirical evaluation of SAT solvers on bit-vector problems. In:
Bobot, F., Weber, T. (eds.) Proceedings of the 18th International Workshop on Sat-
isfiability Modulo Theories co-located with the 10th International Joint Conference
on Automated Reasoning (IJCAR 2020), Online (initially located in Paris, France),
July 5-6, 2020. CEUR Workshop Proceedings, vol. 2854, pp. 15–25. CEUR-WS.org
(2020), https://ceur-ws.org/Vol-2854/paper1.pdf

3. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans.
Software Eng. 37(6), 845–857 (2011). https://doi.org/10.1109/TSE.2010.110,
https://doi.org/10.1109/TSE.2010.110

4. Ignatiev, A., Morgado, A., Marques-Silva, J.: Pysat: A python toolkit for proto-
typing with sat oracles. In: Theory and Applications of Satisfiability Testing–SAT
2018: 21st International Conference, SAT 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 9–12, 2018, Proceedings. pp. 428–437.
Springer (2018)


