
Z3-Noodler
System description for SMT-comp 2023

Yu-Fang Chen2, David Chocholatý1, Vojtěch Havlena1,
Lukáš Holík1, Ondřej Lengál1, Juraj Síč1

1 Brno University of Technology, Brno
2Academia Sinica, Taipei

Abstract

This is a brief overview of the string solver Z3-Noodler1 entering SMT-comp 2023. It is based on the SMT solver Z3 [1]
in which it replaces the solver for the theory of strings. It is built around the equation stabilisation algorithm from [2],
implemented on top of the automata library Mata2.

1 Overview

Z3-Noodler1 is a string solver that targets string con-
straints such as those that occur at analysis of pro-
grams, regular filters, policy descriptions, etc. It is
built on top of the SMT-solver Z3 [1] and automata
library Mata2. The core of the string solver is the
equation stabilisation algorithm from [2].

From the SMT-lib string language, the core solver
Noodler handles the basic string constraints, word
equations, regular constraints, linear arithmetic (LIA)
constraints on string lengths, and extended string
predicates such as str.replace, str.substring,
str.at, str.indexof, str.prefixof, str.suffixof,
str.contains, str.replace_re, str.contains, and
has a limited support for negated str.contains.
These extended predicates are to the basic string
constraints. The core solver does not support the
str.replace_all predicate, conversions between
strings and integers, and transducer constraints, but
Z3-Noodler may still handle predicates unsupported
by the core solver if they are eliminated by the theory
rewriter of Z3.

Z3-Noodler is implemented in C++, as well as Z3
and Mata. It is a complete reimplementation of the
Python prototype presented in [2].

2 Core Algorithm

The core of Z3-Noodler is the stabilisation algorithm in-
troduced in [2] that solves word equations combined
with regular membership constraints. In a nutshell,
a word equation x1 . . . xm = xm+1 . . . xn and a set of
regular membership constraints x ∈ Lx are said to
be stable if the concatenation of the languages on the
left, Lx1 · · · Lxm , is equal to the concatenation of the
languages on the right, Lxm+1 · · · Lxn . It is shown in

1 https://github.com/VeriFIT/z3-noodler
2 https://github.com/VeriFIT/mata

[2] that a stable system has a solution. The stabil-
isation algorithm uses extensions of classical non-
deterministic automata constructions, implemented
in Mata, to refine the languages until stability is
achieved or some of the languages becomes empty, in-
dicating unsatisfiability. The strength of the stabilisa-
tion algorithm is that it makes a good use of symbolic
automata representation of equations, it does not re-
quire equation splitting (enumerating alignments of
the left and right hand side), and it eliminates much
of redundant automata constructions needed for in-
stance in [3] and derived approaches. It leverages
the efficiency of Mata (efficiency of an early proto-
type of Mata has been measured in [4]). The core
solver combines the stabilisation algorithm with the
older equation alignment and automata splitting of [3] in
order to derive LIA formulae characterising lengths
of strings solutions. As alignment and splitting is
more expensive, it is used only when it is neces-
sary to isolate a string variable involved in length
constraints from word equations. The algorithm is
complete for the chain-free combinations of equations,
regular constraints, and LIA over string lengths, a
largest known decidable fragment of these types of
constraints, introduced in [5].

3 High Level Architecture

The core string solving algorithm replaces the string
theory solver of Z3. Z3-Noodler still uses the in-
frastructure of Z3 and the theory rewriter. However,
since the core string solver is quite different from
the original Z3 string solver, some of the rewritings
are undesired and we disable them. For instance,
we remove rules that rewrite regular membership
constraints to other types of constraints (as solving
regular constraints and equations in our approach
is efficient), and we eliminate rewriting rules that
produce if-then-else predicates, not supported by the

https://github.com/VeriFIT/z3-noodler
https://github.com/VeriFIT/mata

core string solver.
The interaction of the core solver with Z3 is orga-

nized as follows. Upon receiving a satisfying assign-
ment from the SAT-solver (a conjunction of string
literals), the core string solver reduces the string
conjunction to a LIA constraint over string lengths,
and returns it to Z3 as theory lemma, to be solved
together with the rest of the input arithmetic con-
straints by the Z3’s internal LIA solver. As an opti-
mization of this process, when the string constraint
reduces into a disjunction of LIA length constraints,
then each disjunct is passed to Z3 individually— the
current solver context is cloned and queried about
satisfiability of the LIA constraint conjoined with
the disjunct. The disjuncts are generated lazily on
demand.

4 Preprocessing

The core string solver uses a set of simple rewrit-
ing rules that infer length constraints form equations
(such as |x| = 0 when x must be the empty string or
|x|+ |y| = |u|+ |v| for an equation xy = uv), elimi-
nate trivial equations such as x = y, simplify equa-
tions when a string variables is known to equal the
empty string, transform equations to regular mem-
bership constraint when possible (x = uv becomes
x ∈ Lu · Lv if u, v do not appear elsewhere and are
constraint by the languages Lu and Lv, respectively),
and simplify equations such as xyz = xuz into y = u.
Besides the semantics preserving rewriting rules, we
use one under-approximating rule that replaces a
membership of a variable in a co-finite language by
a length constraint that excludes all the lengths of
words outside the language.

5 Noodler at SMT-comp 2023

We are submitting a version 0.2.0 of Z3-Noodler to
participate in the single-query track division QF-S
and QF-SLIA. The submitted version is linked against
version 0.58.0 of Mata and version 4.12.0 of Z3.

Both Z3-Noodler and Mata are currently in early
stages of the development. Most of the recent im-
plementation effort has been spent in ensuring cor-
rectness of Z3-Noodler, and a number of essential
optimisations had to be left for the future work (one
of them is for instance implementation of alphabet
mintermisation, probably a major ingredient of effi-
ciency of Mata in [4]).

References

[1] Leonardo de Moura and Nikolaj Bjørner. “Z3:
An Efficient SMT Solver”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems.
Ed. by C. R. Ramakrishnan and Jakob Rehof.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 337–340. isbn: 978-3-540-78800-3.

[2] Frantisek Blahoudek et al. “Word Equations in
Synergy with Regular Constraints”. In: Formal
Methods - 25th International Symposium, FM 2023,
Lübeck, Germany, March 6-10, 2023, Proceedings.
Ed. by Marsha Chechik, Joost-Pieter Katoen, and
Martin Leucker. Vol. 14000. Lecture Notes in
Computer Science. Springer, 2023, pp. 403–423.
doi: 10.1007/978-3-031-27481-7_23. url:
https://doi.org/10.1007/978-3-031-27481-
7%5C_23.

[3] Parosh Aziz Abdulla et al. “String Constraints
for Verification”. In: Computer Aided Verification
- 26th International Conference, CAV 2014, Held
as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings. Ed.
by Armin Biere and Roderick Bloem. Vol. 8559.
Lecture Notes in Computer Science. Springer,
2014, pp. 150–166. doi: 10.1007/978-3-319-
08867-9_10. url: https://doi.org/10.1007/
978-3-319-08867-9%5C_10.

[4] Tomáš Fiedor et al. Reasoning about Regular
Properties: A Comparative Study. Accepted at
CADE’23. 2023. arXiv: 2304.05064 [cs.FL].

[5] Parosh Aziz Abdulla et al. “Chain-Free String
Constraints”. In: Automated Technology for Veri-
fication and Analysis - 17th International Sympo-
sium, ATVA 2019, Taipei, Taiwan, October 28-31,
2019, Proceedings. Ed. by Yu-Fang Chen, Chih-
Hong Cheng, and Javier Esparza. Vol. 11781. Lec-
ture Notes in Computer Science. Springer, 2019,
pp. 277–293. doi: 10.1007/978-3-030-31784-
3_16. url: https://doi.org/10.1007/978-3-
030-31784-3%5C_16.

2

https://doi.org/10.1007/978-3-031-27481-7_23
https://doi.org/10.1007/978-3-031-27481-7%5C_23
https://doi.org/10.1007/978-3-031-27481-7%5C_23
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9%5C_10
https://doi.org/10.1007/978-3-319-08867-9%5C_10
https://arxiv.org/abs/2304.05064
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3%5C_16
https://doi.org/10.1007/978-3-030-31784-3%5C_16

	Overview
	Core Algorithm
	High Level Architecture
	Preprocessing
	Noodler at SMT-comp 2023

