1

The YAGA SMT Solver in SMT-COMP 2023

Martin Blicha!?, Drahomir Handk!, and Jan Kofromn'

! Charles University, Prague, Czech Republic
2 Universita della Svizzera italiana, Lugano, Switzerland

Overview

YAGA is a new SMT solver developed at Charles University with the goal to investigate alterna-
tives to the dominant CDCL(T) framework for SMT solving. The solver implements the Model
Constructing Satisfiability Calculus (MCSAT) [4, 7]. It currently has implementation of plug-
ins for Boolean and rational variables which can be used to decide problems in quantifier-free
linear real arithmetic. The Boolean plugin uses the typical mechanism of watched literals [§]
to perform Boolean constraint propagation. The plugin for linear real arithmetic uses a similar
mechanism of watched variables to keep track of variable bounds [7]. The last checked variable
in each clause or a linear constraint is cached. Search for a non-falsified literal or an unas-
signed rational variable always starts from the last position. Additionally, we use the following
heuristics:

2

Variable order. YAGA uses a generalization of the VSIDS heuristic implementation from
MiniSat [10]. Variable score is increased for each variable involved in conflict derivation.
Variables of all types (i.e., Boolean and rational variables) are ranked using this heuristic.

Restart scheme. We use a simplified restart scheme from the Glucose solver [2]. The
solver maintains an exponential average of glucose level (LBD) of all learned clauses [3]
and an exponential LBD average of recently learned clauses. YAGA restarts when the
recent LBD average exceeds the global average by some threshold.

Clause deletion. YAGA deletes subsumed learned clauses on restart [5].

Clause minimization. Learned clauses are minimized using self-subsuming resolution in-
troduced in MiniSat [10].

Value caching. Similarly to phase-saving heuristics used in SAT solvers [9], YAGA caches
values of decided rational variables [7]. It preferably uses cached values for rational
variables. If a cached value is not available, the solver tries to find a small integer or a
fraction with a small denominator which is a power of two.

Bound caching. We keep a stack of variable bounds for each rational variable. When the
solver backtracks, it lazily removes obsolete bounds from the stack. Bounds computed at
a decision level lower than the backtrack level do not have to be recomputed.

External Code

The solver uses a custom representation of unbounded rational values from OPENSMT [6],
which is itself based on a library written by David Monniaux and uses GMP [1].



The YaGcA SMT Solver Blicha et al.

3

Availability

The source code repository and more information on the solver is available at

e https://github.com/d3sformal/yaga

References

(1]
2]

8]

(4]

[5]

(7l

(8]

(9]

[10]

The GNU multiple precision arithmetic library. https://gmplib.org/. Accessed: 2023-05-13.

Gilles Audemard and Laurent Simon. On the Glucose SAT solver. International Journal on
Artificial Intelligence Tools, 27:1840001, 02 2018.

Armin Biere. Weaknesses of CDCL solvers. In Institute Workshop on Theoretical Foundations of
SAT Solving, 2016.

Leonardo de Moura and Dejan Jovanovié. A Model-Constructing Satisfiability Calculus. In
Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Verification, Model Check-
ing, and Abstract Interpretation, pages 1-12, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause elim-
ination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of Satisfiability
Testing, pages 61-75, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Antti E. J. Hyvéarinen, Matteo Marescotti, Leonardo Alt, and Natasha Sharygina. OpenSMT2:
An SMT Solver for Multi-core and Cloud Computing. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing — SAT 2016, pages 547-553, Cham, 2016.
Springer International Publishing.

Dejan Jovanovic, Clark Barrett, and Leonardo de Moura. The design and implementation of the
model constructing satisfiability calculus. In 2018 Formal Methods in Computer-Aided Design,
pages 173-180, 2013.

M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an efficient
SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37252),
pages 530-535, 2001.

Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for satisfia-
bility solvers. In Jodo Marques-Silva and Karem A. Sakallah, editors, Theory and Applications
of Satisfiability Testing — SAT 2007, pages 294—299, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

Niklas Soérensson and Niklas Een. Minisat v1.13 - A SAT solver with conflict-clause minimization.
International Conference on Theory and Applications of Satisfiability Testing, 01 2005.


https://github.com/d3sformal/yaga
https://gmplib.org/

	Overview
	External Code
	Availability

