
The Yaga SMT Solver in SMT-COMP 2023

Martin Blicha1,2, Drahomı́r Hanák1, and Jan Kofroň1
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1 Overview

Yaga is a new SMT solver developed at Charles University with the goal to investigate alterna-
tives to the dominant CDCL(T) framework for SMT solving. The solver implements the Model
Constructing Satisfiability Calculus (MCSAT) [4, 7]. It currently has implementation of plug-
ins for Boolean and rational variables which can be used to decide problems in quantifier-free
linear real arithmetic. The Boolean plugin uses the typical mechanism of watched literals [8]
to perform Boolean constraint propagation. The plugin for linear real arithmetic uses a similar
mechanism of watched variables to keep track of variable bounds [7]. The last checked variable
in each clause or a linear constraint is cached. Search for a non-falsified literal or an unas-
signed rational variable always starts from the last position. Additionally, we use the following
heuristics:

• Variable order. Yaga uses a generalization of the VSIDS heuristic implementation from
MiniSat [10]. Variable score is increased for each variable involved in conflict derivation.
Variables of all types (i.e., Boolean and rational variables) are ranked using this heuristic.

• Restart scheme. We use a simplified restart scheme from the Glucose solver [2]. The
solver maintains an exponential average of glucose level (LBD) of all learned clauses [3]
and an exponential LBD average of recently learned clauses. Yaga restarts when the
recent LBD average exceeds the global average by some threshold.

• Clause deletion. Yaga deletes subsumed learned clauses on restart [5].

• Clause minimization. Learned clauses are minimized using self-subsuming resolution in-
troduced in MiniSat [10].

• Value caching. Similarly to phase-saving heuristics used in SAT solvers [9], Yaga caches
values of decided rational variables [7]. It preferably uses cached values for rational
variables. If a cached value is not available, the solver tries to find a small integer or a
fraction with a small denominator which is a power of two.

• Bound caching. We keep a stack of variable bounds for each rational variable. When the
solver backtracks, it lazily removes obsolete bounds from the stack. Bounds computed at
a decision level lower than the backtrack level do not have to be recomputed.

2 External Code

The solver uses a custom representation of unbounded rational values from OpenSMT [6],
which is itself based on a library written by David Monniaux and uses GMP [1].



The Yaga SMT Solver Blicha et al.

3 Availability

The source code repository and more information on the solver is available at

• https://github.com/d3sformal/yaga
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