
The Yaga SMT Solver in SMT-COMP 2023

Martin Blicha1,2, Drahomı́r Hanák1, and Jan Kofroň1

1 Charles University, Prague, Czech Republic
2 Università della Svizzera italiana, Lugano, Switzerland

1 Overview

Yaga is a new SMT solver developed at Charles University with the goal to investigate alterna-
tives to the dominant CDCL(T) framework for SMT solving. The solver implements the Model
Constructing Satisfiability Calculus (MCSAT) [4, 7]. It currently has implementation of plug-
ins for Boolean and rational variables which can be used to decide problems in quantifier-free
linear real arithmetic. The Boolean plugin uses the typical mechanism of watched literals [8]
to perform Boolean constraint propagation. The plugin for linear real arithmetic uses a similar
mechanism of watched variables to keep track of variable bounds [7]. The last checked variable
in each clause or a linear constraint is cached. Search for a non-falsified literal or an unas-
signed rational variable always starts from the last position. Additionally, we use the following
heuristics:

• Variable order. Yaga uses a generalization of the VSIDS heuristic implementation from
MiniSat [10]. Variable score is increased for each variable involved in conflict derivation.
Variables of all types (i.e., Boolean and rational variables) are ranked using this heuristic.

• Restart scheme. We use a simplified restart scheme from the Glucose solver [2]. The
solver maintains an exponential average of glucose level (LBD) of all learned clauses [3]
and an exponential LBD average of recently learned clauses. Yaga restarts when the
recent LBD average exceeds the global average by some threshold.

• Clause deletion. Yaga deletes subsumed learned clauses on restart [5].

• Clause minimization. Learned clauses are minimized using self-subsuming resolution in-
troduced in MiniSat [10].

• Value caching. Similarly to phase-saving heuristics used in SAT solvers [9], Yaga caches
values of decided rational variables [7]. It preferably uses cached values for rational
variables. If a cached value is not available, the solver tries to find a small integer or a
fraction with a small denominator which is a power of two.

• Bound caching. We keep a stack of variable bounds for each rational variable. When the
solver backtracks, it lazily removes obsolete bounds from the stack. Bounds computed at
a decision level lower than the backtrack level do not have to be recomputed.

2 External Code

The solver uses a custom representation of unbounded rational values from OpenSMT [6],
which is itself based on a library written by David Monniaux and uses GMP [1].



The Yaga SMT Solver Blicha et al.

3 Availability

The source code repository and more information on the solver is available at

• https://github.com/d3sformal/yaga

References

[1] The GNU multiple precision arithmetic library. https://gmplib.org/. Accessed: 2023-05-13.

[2] Gilles Audemard and Laurent Simon. On the Glucose SAT solver. International Journal on
Artificial Intelligence Tools, 27:1840001, 02 2018.

[3] Armin Biere. Weaknesses of CDCL solvers. In Institute Workshop on Theoretical Foundations of
SAT Solving, 2016.

[4] Leonardo de Moura and Dejan Jovanović. A Model-Constructing Satisfiability Calculus. In
Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Verification, Model Check-
ing, and Abstract Interpretation, pages 1–12, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[5] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause elim-
ination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of Satisfiability
Testing, pages 61–75, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[6] Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt, and Natasha Sharygina. OpenSMT2:
An SMT Solver for Multi-core and Cloud Computing. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing – SAT 2016, pages 547–553, Cham, 2016.
Springer International Publishing.

[7] Dejan Jovanovic, Clark Barrett, and Leonardo de Moura. The design and implementation of the
model constructing satisfiability calculus. In 2013 Formal Methods in Computer-Aided Design,
pages 173–180, 2013.

[8] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an efficient
SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232),
pages 530–535, 2001.

[9] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for satisfia-
bility solvers. In João Marques-Silva and Karem A. Sakallah, editors, Theory and Applications
of Satisfiability Testing – SAT 2007, pages 294–299, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[10] Niklas Sörensson and Niklas Een. Minisat v1.13 - A SAT solver with conflict-clause minimization.
International Conference on Theory and Applications of Satisfiability Testing, 01 2005.

2

https://github.com/d3sformal/yaga
https://gmplib.org/

	Overview
	External Code
	Availability

