
Ultimate IntBlastingWrapper

Max Barth and Matthias Heizmann

University of Freiburg, Germany

Abstract

This system description presents Ultimate IntBlastingWrapper+SMTInterpol
which is our participant at the SMT-COMP 2023. This tool is an SMT solver for bitvector
logics. It tries to translate bitvector formulas into equisatisfiable integer formulas and
applies the SMT solver SMTInterpol to the integer formulas.

1 Overview

Ultimate IntBlastingWrapper, or short IntBlastingWrapper, is an SMT solver for
the theory of fixed-sized bitvectors. It is a wrapper tool, i.e., a tool that calls an other SMT
solver. Our tool tries to translate bitvector formulas into equisatisfiable integer formulas. The
integer formulas are then passed to the wrapped solver which has to be a solver that supports at
least the theory of linear integer arithmetic. At the SMT-COMP 2023 the wrapped SMT solver
is SMTInterpol[2] and hence the full name of our participant is Ultimate IntBlasting-
Wrapper+SMTInterpol. The version of the included SMTInterpol is 2.5-1252-g82eb3a0.

2 Int-Blasting

The classical approach for reasoning in the theory of fixed-sized bitvectors is called bit-blasting.
Here, each bit of the bitvector is translated to a propositional logical formula and this formula
is passed to a SAT solver. Our tool implements a completely different approach [4, 5, 3, 7,
1, 6] in which bitvectors are considered as the binary encoding of an integer and bitvector
formulas are translated to nonlinear integer arithmetic formulas that extensively use modulo
operations. In analogy to the term bit-blasting, we call this translation int-blasting. Bit-blasting
is effective, every operation from the theory of fixed-sized bitvectors can be translated into a
Boolean formula. However, bit-blasting does not scale well for large bitvectors. Independent of
the bitvector’s width, int-blasting is straightforward for arithmetic operations. However, int-
blasting is difficult for bitwise operations (e.g., bvand). Our tool implements a novel variation
of int-blasting that has not yet been published.

While working on software verification, one application for fixed-sized bitvectors, we ob-
served that bitwise operations often play only a minor role in the SMT reasoning. The same
holds to some extend also for the SMT-LIB benchmarks, perhaps because many of these stem
from software verification. The aim our submission is to demonstrate that our variation of
int-blasting is effective on many SMT benchmarks. We participate only in the Single Query
Track.

3 Software Project

Our tool is part of the Ultimate program analysis framework1. The source code is available
in a public repository2.

1https://ultimate-pa.org/
2https://github.com/ultimate-pa/ultimate/

https://ultimate-pa.org/
https://github.com/ultimate-pa/ultimate/


Ultimate Eliminator M. Heizmann

References

[1] Peter Backeman, Philipp Rümmer, and Aleksandar Zeljic. Bit-vector interpolation and quantifier
elimination by lazy reduction. In Nikolaj S. Bjørner and Arie Gurfinkel, editors, 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2,
2018, pages 1–10. IEEE, 2018.

[2] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. Smtinterpol: An interpolating SMT solver.
In Alastair F. Donaldson and David Parker, editors, Model Checking Software - 19th International
Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings, volume 7385 of Lecture Notes
in Computer Science, pages 248–254. Springer, 2012.

[3] Alberto Griggio. Effective word-level interpolation for software verification. In Per Bjesse and
Anna Slobodová, editors, International Conference on Formal Methods in Computer-Aided Design,
FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011, pages 28–36. FMCAD Inc., 2011.

[4] Arie Gurfinkel, Anton Belov, and João Marques-Silva. Synthesizing safe bit-precise invariants.
In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-
13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages 93–108. Springer,
2014.

[5] Yuandong Cyrus Liu, Chengbin Pang, Daniel Dietsch, Eric Koskinen, Ton-Chanh Le, Georgios
Portokalidis, and Jun Xu. Source-level bitwise branching for temporal verification of lifted binaries.
CoRR, abs/2105.05159, 2021.

[6] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Yoni Zohar, Clark W. Barrett, and Cesare
Tinelli. Towards bit-width-independent proofs in SMT solvers. In Pascal Fontaine, editor, Au-
tomated Deduction - CADE 27 - 27th International Conference on Automated Deduction, Natal,
Brazil, August 27-30, 2019, Proceedings, volume 11716 of Lecture Notes in Computer Science, pages
366–384. Springer, 2019.

[7] Takamasa Okudono and Andy King. Mind the gap: Bit-vector interpolation recast over linear
integer arithmetic. In Armin Biere and David Parker, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland,
April 25-30, 2020, Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science, pages
79–96. Springer, 2020.

2


	Overview
	Int-Blasting
	Software Project

