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Abstract

This system description presents Ultimate IntBlastingWrapper+SMTInterpol
which is our participant at the SMT-COMP 2023. This tool is an SMT solver for bitvector
logics. It tries to translate bitvector formulas into equisatisfiable integer formulas and
applies the SMT solver SMTInterpol to the integer formulas.

1 Overview

Ultimate IntBlastingWrapper, or short IntBlastingWrapper, is an SMT solver for
the theory of fixed-sized bitvectors. It is a wrapper tool, i.e., a tool that calls an other SMT
solver. Our tool tries to translate bitvector formulas into equisatisfiable integer formulas. The
integer formulas are then passed to the wrapped solver which has to be a solver that supports at
least the theory of linear integer arithmetic. At the SMT-COMP 2023 the wrapped SMT solver
is SMTInterpol[2] and hence the full name of our participant is Ultimate IntBlasting-
Wrapper+SMTInterpol. The version of the included SMTInterpol is 2.5-1252-g82eb3a0.

2 Int-Blasting

The classical approach for reasoning in the theory of fixed-sized bitvectors is called bit-blasting.
Here, each bit of the bitvector is translated to a propositional logical formula and this formula
is passed to a SAT solver. Our tool implements a completely different approach [4, 5, 3, 7,
1, 6] in which bitvectors are considered as the binary encoding of an integer and bitvector
formulas are translated to nonlinear integer arithmetic formulas that extensively use modulo
operations. In analogy to the term bit-blasting, we call this translation int-blasting. Bit-blasting
is effective, every operation from the theory of fixed-sized bitvectors can be translated into a
Boolean formula. However, bit-blasting does not scale well for large bitvectors. Independent of
the bitvector’s width, int-blasting is straightforward for arithmetic operations. However, int-
blasting is difficult for bitwise operations (e.g., bvand). Our tool implements a novel variation
of int-blasting that has not yet been published.

While working on software verification, one application for fixed-sized bitvectors, we ob-
served that bitwise operations often play only a minor role in the SMT reasoning. The same
holds to some extend also for the SMT-LIB benchmarks, perhaps because many of these stem
from software verification. The aim our submission is to demonstrate that our variation of
int-blasting is effective on many SMT benchmarks. We participate only in the Single Query
Track.

3 Software Project

Our tool is part of the Ultimate program analysis framework1. The source code is available
in a public repository2.

1https://ultimate-pa.org/
2https://github.com/ultimate-pa/ultimate/

https://ultimate-pa.org/
https://github.com/ultimate-pa/ultimate/
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