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Description

SMTInterpol is an SMT solver written in Java and available under LGPL v3. It supports
the combination of the theories of uninterpreted functions, linear arithmetic over integers and
reals, arrays, and datatypes. Furthermore it can produce models, proofs, unsatisfiable cores,
and interpolants. The solver reads input in SMT-LIB format. It includes parsers for DIMACS,
AIGER, and SMT-LIB version 2.6.

The solver is based on the well-known DPLL(T)/CDCL framework [GHN+04]. It uses
variants of standard algorithms for CNF conversion [PG86] and congruence closure [NO05].
The solver for linear arithmetic is based on Simplex [DdM06], the sum-of-infeasibility algo-
rithm [KBD13], and branch-and-cut for integer arithmetic [CH15a, DDA09]. The array decision
procedure is based on weak equivalences [CH15b] and includes an extension for constant ar-
rays [HS19]. The decision procedure for data types is based on the rules presented in [BST07].
The solver for quantified formulas performs an incremental search for conflicting and unit-
propagating instances of quantified formulas [HS21] which is complemented with a version of
enumerative instantiation [RBF18] to ensure completeness for the finite almost uninterpreted
fragment [GdM09]. Theory combination is performed based on partial models produced by the
theory solvers [dMB08].

The main focus of SMTInterpol is the incremental track. This track simulates the typical
application of SMTInterpol where a user asks multiple queries. As an extension, SMTInterpol
supports interpolation for all supported theories except for datatypes [CH16, HS18, HS19,
HHS21]. It computes quantifier-free interpolants for quantifier-free input formulas. This makes
it useful as a backend for software verification tools. In particular, Ultimate Automizer1

andCPAchecker2, the winners of the SV-COMP 2016–2022, used SMTInterpol. SMTInterpol
comes with a proof production [HS22] that is based on resolution using a minimal set of axioms.

This year, only a few minor things were improved. We now generate models for the theory
of datatypes. The proof format was slightly changed to avoid quadratic blow-up in when
dealing with logical operators with many arguments. And an unsoundness when combining
extensionality on arrays with quantifiers was fixed.

Competition Version

The version of SMTInterpol submitted to the SMT-COMP 2023 contains the new proof produc-
tion module. SMTInterpol can produce complete proofs for all supported logics. In the single
query, incremental, and unsat core track SMTInterpol runs with its internal proof checker en-
abled such that all proofs of unsatisfiability are checked before an unsat result is output. Only

1https://ultimate.informatik.uni-freiburg.de/
2https://cpachecker.sosy-lab.org/
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if the check succeeds, SMTInterpol returns unsatisfiable. For the proof exhibition track an
external proof checker was implemented.

Proof Format

The proof format of SMTInterpol is an S-expression with a syntax very similar to SMT-LIB
terms [HS22]. The format is based on resolution and each clause is a set of SMT-LIB formulas
p or negated formulas ¬p where p is an SMT-LIB formula (an SMT-LIB term of type Bool).
The meaning of SMT-LIB functions is given by axioms and even logical operators like or and
not have no built-in meaning. The only proof rule is the resolution rule and several axioms
provide the meaning of the theory functions and logical operators (currently around sixty).

The concrete syntax for an input formula is (assume p) where p is equal to an asserted
term in the SMT-LIB benchmark, which proves the unit-clause {p}. An example for an axiom
is not-introduction with the concrete syntax (not+ p) where p is an SMT-LIB formula. It
proves the clause {(not p), p} and states that one of the two terms in the clause must be true.
Similarly, there is not-elimination with the concrete syntax (not- p), which proves the clause
{¬(not p),¬p}. The concrete syntax of the resolution rule is (res p prf 1 prf 2) where p is
an SMT-LIB formula, prf 1 a subproof of a clause C1, and prf 2 a subproof of a clause C2. The
term (res p prf 1 prf 2) is then a proof of the clause (C1 \ {p}) ∪ (C2 \ {¬p}).

Terms and subproofs can be bound to variables using the let-binder from SMT-LIB for
terms and a new let-proof binder with the same syntax for subproofs. Two terms are consid-
ered equal, if they are identical after expanding all let-binders. These binders are important
to express the proof succinctly, but can also be used to express the proof in a trace form, where
each clause proved by the solver is bound to an identifier to be used later in the proof of other
clauses.

Proof Checker

The proof checker is implemented as an external procedure. The goal of a proof checker is to
minimize the amount of trusted code. Besides the obvious parts that check the correctness of
axioms and the applications of the resolution rules, there are several other trusted code parts.
The trusted code base contains also the parser for SMT-LIB benchmarks, the data structures
to represent SMT-LIB terms, the type checker for SMT-LIB terms and the transformation of
let terms into their expanded form as a DAG. Finally the underlying hardware, the operating
system, the compiler, and the programming language environment need also be trusted.

In SMTInterpol, the parser of SMT-LIB benchmarks, the term data structures and the
DAG transformation are shared between the solver and the proof checker. Therefore, these
parts pose the biggest risk of introducing undetected unsoundness. We minimize the problems
by keeping the parser and data structures simple. In particular, the data structure for terms
is a simple abstract syntax tree of the concrete SMT-LIB syntax and no simplifications of
the formula are done inside the parser. Each term is represented by a Java object, e.g. an
application term is represented by an object that contains a reference to the head function
symbol (another Java object) and references to the argument terms. Most SMT-LIB terms are
represented as application terms; only for quantified formulas, choose, let binders, match terms
(for datatypes), numerical constants, and term variables, a different subclass of the term class
is used.
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There is a simple term factory that keeps a hash set of already produced terms and that
ensures that each term is only created once. For overloaded functions like - and parametric
functions like =, a function symbol factory takes the input sorts, determines the result sort,
creates a plain function symbol with the correct arity if it does not already exists, and finally
returns this function symbol. Thus the type checker, which is built into the term factory, does
not need to handle overloaded symbols because the function symbol is already an instance with
the correct arity. Since the type checker is part of the term factory, all created terms are always
well-typed and there is no danger of accidentally skipping a type checking step.

We support let terms directly in our term AST structure. However, when working with
terms, the let binders are usually removed. This is achieved by a term transformer that removes
all applications of let and replaces the term variables bound by a let with the terms that they
are bound to. This term transformer will also handle safe bounded renaming to ensure that
inserting a term containing term variables will not accidentally bind the term variables to the
wrong quantifier. This renaming is done in a deterministic way to ensure that terms that are
identical up to let expansion will expand into identical terms. For printing terms, another term
transformer is used to reintroduce let terms for binding shared subterms to variables. This
term transformer is not part of the trusted code, though, since the proof checker will never use
it.

The main proof checker will run over the expanded proof term and inductively compute for
each proof subterm the clause proved by the subproof. It uses a hash table to avoid computing
the clause twice for the same proof term (this will happen due to let expansion). The clauses
themselves are represented by hash sets of literals, which are either positive or negated terms.
Implementing the resolution rule is straightforward. The resolution rule will warn if the pivot
literal does not appear with the expected polarity, but will still compute the resulting clause
(which is sound). This helps to debug faulty proofs without rejecting a correct proof that
accidentally applied the same resolution too often.

Another procedure computes for each axiom and assume statement the corresponding clause.
This procedure needs to check the side condition for the axioms and compute the literals in
the proved clause. Unsoundness when computing the literals will likely be detected during
testing, since a clause with wrong literals will usually make a correct proof fail during testing.
However, a wrong side condition may not cause a correct proof to fail. We keep the necessary
side condition of the rules simple to avoid unsoundness errors in our proof checker. Moreover,
side conditions like the one for farkas that check the equality of two terms are handled by
checking whether the difference of the terms is zero. Since a bug is very unlikely to cancel all
terms, this method is more likely to mark valid proofs as invalid than the other way round. Note
that since our term generator only produces well-typed terms, we do not need to typecheck the
terms when checking an axiom.

Authors, Logics, and Tracks

The code was written by Jürgen Christ, Daniel Dietsch, Leonard Fichtner, Joanna Greulich,
Elisabeth Henkel, Matthias Heizmann, Jochen Hoenicke, Moritz Mohr, Alexander Nutz, Markus
Pomrehn, Pascal Raiola, and Tanja Schindler. Further information about SMTInterpol can be
found at

https://ultimate.informatik.uni-freiburg.de/smtinterpol/

The sources are available via GitHub
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https://github.com/ultimate-pa/smtinterpol

SMTInterpol participates in the single query track, the incremental track, the unsat core
track, the model validation track, and the proof exhibition track. It supports all combinations of
uninterpreted functions, linear arithmetic, arrays, datatypes, and quantified formulas. However,
the model generator currently does not support quantifiers.

In the single query track, the unsat core track, and the proof track SMTInterpol participates
in the logics matched by (QF_)?(AX?)?(UF)?(DT)?([IR]DL|L[IR]*A)?|QF_(A|UF)+N[IR]*A3,
in the incremental track in the logics (QF_)?(AX?)?(UF)?(DT)?([IR]DL|[NL][IR]*A)?, and in
the model validation track in the logics matched by (QF_)(AX?)?(UF)?(DT)?([IR]DL|L[IR]*A)?.
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