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1 Overview

OpenSMT [9] is a T-DPLL based SMT solver [13] that has been developed at USI, Switzer-
land, since 2008. The solver is written in C++ and currently supports the quantifier-free logics
of equality with uninterpreted functions (QF UF), linear real and integer arithmetic (QF LRA,
QF LIA), arrays (QF AX) and their combinations (QF UFLRA, QF UFLIA, QF ALIA, QF ALRA,
QF AUFLIA, QF AUFLRA). It has a specialized solver for real and integer difference logics
(QF RDL, QF IDL). OpenSMT also supports some aspects of bit-vector logic (QF BV).

In comparison to 2022, the 2023 competition entry supports a combination of arrays with lin-
ear arithmetic and uninterpreted functions(QF ALIA, QF ALRA, QF AUFLIA, QF AUFLRA).
Additionally, the lookahead engine of OpenSMT now supports interpolation and incremental
solving. Performance of a lookahead engine has been improved with a new heuristic.

OpenSMT features not exercised in the competition include support for a wide range of
interpolation algorithms for propositional logic [2], linear real arithmetic [6], and uninterpreted
functions [3] (available also in the incremental mode); an experimental lookahead-based search
algorithm [10] as an alternative to the more standard CDCL algorithm; and features that
support search-space partitioning in particular designed for parallel solving [11]. OpenSMT is
now also able to efficiently produce proofs of unsatisfiability [14], although this feature is not
merged to the main repository.

2 External Code and Contributors

The SAT solver driving OpenSMT is based on the MiniSAT solver [7], and the rational num-
ber implementation is inspired by a library written by David Monniaux. Several people have
directly contributed to the OpenSMT code. In alphabetical order, the major contributors are
Leonardo Alt (Ethereum Foundation), Sepideh Asadi (USI), Masoud Asadzade (USI), Martin
Blicha (USI, Charles University), Konstantin I. Britikov (USI), Roberto Bruttomesso (Cyber-
security / Nozomi Networks), Antti E. J. Hyvärinen (Certora), Andrew Jones (Vector), Václav
Luňák (Charles University), Matteo Marescotti (Meta), Rodrigo Benedito Otoni (USI), Edgar
Pek (University of Illinois, Urbana-Champaign), Simone Fulvio Rollini (United Technologies
Research Center), Parvin Sadigova (King’s College London), Mate Soos (Ethereum Founda-
tion), Michal Tarina and Aliaksei Tsitovich (Sonova). The solver is being developed in Natasha
Sharygina’s software verification group at USI.

3 Utilization

OpenSMT is used in a range of projects as a back-end solver. Most notably, it is a basis for
a new CHC solver Golem which scored among the top solvers in LIA-Lin, LIA-Nonlin, and
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LRA-TS tracks in the last three editions of CHC-COMP [15, 8, 4]. OpenSMT also forms the
basis of the model checkers HiFrog [1] and UpProver [5]. It was also used as an interpolation
engine of the Sally model checker [12].

4 Availability

The source code repository and more information on the solver is available at

• https://github.com/usi-verification-and-security/opensmt and

• https://verify.inf.usi.ch/opensmt
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