
The OpenSMT Solver in SMT-COMP 2023

Martin Blicha1,3, Konstantin I. Britikov1, Antti E. J. Hyvärinen2,
Rodrigo Otoni1, and Natasha Sharygina1

1 Università della Svizzera italiana (USI), Lugano, Switzerland
2 Certora

3 Charles University, Prague, Czech Republic

1 Overview

OpenSMT [9] is a T-DPLL based SMT solver [13] that has been developed at USI, Switzer-
land, since 2008. The solver is written in C++ and currently supports the quantifier-free logics
of equality with uninterpreted functions (QF UF), linear real and integer arithmetic (QF LRA,
QF LIA), arrays (QF AX) and their combinations (QF UFLRA, QF UFLIA, QF ALIA, QF ALRA,
QF AUFLIA, QF AUFLRA). It has a specialized solver for real and integer difference logics
(QF RDL, QF IDL). OpenSMT also supports some aspects of bit-vector logic (QF BV).

In comparison to 2022, the 2023 competition entry supports a combination of arrays with lin-
ear arithmetic and uninterpreted functions(QF ALIA, QF ALRA, QF AUFLIA, QF AUFLRA).
Additionally, the lookahead engine of OpenSMT now supports interpolation and incremental
solving. Performance of a lookahead engine has been improved with a new heuristic.

OpenSMT features not exercised in the competition include support for a wide range of
interpolation algorithms for propositional logic [2], linear real arithmetic [6], and uninterpreted
functions [3] (available also in the incremental mode); an experimental lookahead-based search
algorithm [10] as an alternative to the more standard CDCL algorithm; and features that
support search-space partitioning in particular designed for parallel solving [11]. OpenSMT is
now also able to efficiently produce proofs of unsatisfiability [14], although this feature is not
merged to the main repository.

2 External Code and Contributors

The SAT solver driving OpenSMT is based on the MiniSAT solver [7], and the rational num-
ber implementation is inspired by a library written by David Monniaux. Several people have
directly contributed to the OpenSMT code. In alphabetical order, the major contributors are
Leonardo Alt (Ethereum Foundation), Sepideh Asadi (USI), Masoud Asadzade (USI), Martin
Blicha (USI, Charles University), Konstantin I. Britikov (USI), Roberto Bruttomesso (Cyber-
security / Nozomi Networks), Antti E. J. Hyvärinen (Certora), Andrew Jones (Vector), Václav
Luňák (Charles University), Matteo Marescotti (Meta), Rodrigo Benedito Otoni (USI), Edgar
Pek (University of Illinois, Urbana-Champaign), Simone Fulvio Rollini (United Technologies
Research Center), Parvin Sadigova (King’s College London), Mate Soos (Ethereum Founda-
tion), Michal Tarina and Aliaksei Tsitovich (Sonova). The solver is being developed in Natasha
Sharygina’s software verification group at USI.

3 Utilization

OpenSMT is used in a range of projects as a back-end solver. Most notably, it is a basis for
a new CHC solver Golem which scored among the top solvers in LIA-Lin, LIA-Nonlin, and



The OpenSMT Solver Blicha et al.

LRA-TS tracks in the last three editions of CHC-COMP [15, 8, 4]. OpenSMT also forms the
basis of the model checkers HiFrog [1] and UpProver [5]. It was also used as an interpolation
engine of the Sally model checker [12].

4 Availability

The source code repository and more information on the solver is available at

• https://github.com/usi-verification-and-security/opensmt and

• https://verify.inf.usi.ch/opensmt

References

[1] Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even-Mendoza, Grigory Fedyukovich, Antti
E. J. Hyvärinen, and Natasha Sharygina. HiFrog: SMT-based function summarization for software
verification. In Proc. TACAS 2017, volume 10206 of LNCS, pages 207–213. Springer, 2017.

[2] Leonardo Alt, Grigory Fedyukovich, Antti E. J. Hyvärinen, and Natasha Sharygina. A proof-
sensitive approach for small propositional interpolants. In Proc. VSTTE 2015, volume 9593 of
LNCS, pages 1–18. Springer, 2016.

[3] Leonardo Alt, Antti Eero Johannes Hyvärinen, Sepideh Asadi, and Natasha Sharygina. Duality-
based interpolation for quantifier-free equalities and uninterpreted functions. In Proc. FMCAD
2017, pages 39–46. IEEE, 2017.

[4] Emanuele De Angelis and Hari Govind V K. CHC-COMP 2022: Competition report. Electronic
Proceedings in Theoretical Computer Science, 373:44–62, nov 2022.

[5] Sepideh Asadi, Martin Blicha, Antti E. J. Hyvärinen, Grigory Fedyukovich, and Natasha Shary-
gina. Incremental verification by smt-based summary repair. In 2020 Formal Methods in Computer
Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, pages 77–82. IEEE, 2020.

[6] Martin Blicha, Antti E. J. Hyvärinen, Jan Kofron, and Natasha Sharygina. Decomposing Farkas
interpolants. In Proc. TACAS 2019, volume 11427 of LNCS, pages 3–20. Springer, 2019.

[7] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. SAT 2004, volume 2919 of
LNCS, pages 502–518. Springer, 2004.

[8] Grigory Fedyukovich and Philipp Rümmer. Competition report: CHC-COMP-21. In Hossein
Hojjat and Bishoksan Kafle, editors, Proceedings 8th Workshop on Horn Clauses for Verification
and Synthesis, HCVS@ETAPS 2021, Virtual, 28th March 2021, volume 344 of EPTCS, pages
91–108, 2021.

[9] Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt, and Natasha Sharygina. OpenSMT2:
An SMT solver for multi-core and cloud computing. In Proc. SAT 2016, volume 9710 of LNCS,
pages 547–553. Springer, 2016.

[10] Antti E. J. Hyvärinen, Matteo Marescotti, Parvin Sadigova, Hana Chockler, and Natasha Shary-
gina. Lookahead-based SMT solving. In Proc. LPAR-22, volume 57 of EPiC Series in Computing,
pages 418–434. EasyChair, 2018.

[11] Antti E. J. Hyvärinen, Matteo Marescotti, and Natasha Sharygina. Search-space partitioning for
parallelizing SMT solvers. In Proc. SAT 2015, volume 9340 of LNCS, pages 369–386. Springer,
2015.

[12] Dejan Jovanovic and Bruno Dutertre. Property-directed k-induction. In Proc. FMCAD 2016,
pages 85–92. IEEE, 2016.

[13] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the
ACM, 53(6):937 – 977, 2006.

2

https://github.com/usi-verification-and-security/opensmt
https://verify.inf.usi.ch/opensmt


The OpenSMT Solver Blicha et al.

[14] Rodrigo Otoni, Martin Blicha, Patrick Eugster, Antti E. J. Hyvärinen, and Natasha Sharygina.
Theory-specific proof steps witnessing correctness of SMT executions. In Proc. DAC 2021. IEEE,
2021. To appear.

[15] Philipp Rümmer. Competition report: CHC-COMP-20. Electronic Proceedings in Theoretical
Computer Science, 320:197–219, 08 2020.

3


	Overview
	External Code and Contributors
	Utilization
	Availability

