
CVC5 at the SMT Competition 2022
Haniel Barbosa3, Clark Barrett1, Martin Brain4, Gereon Kremer1, Hanna Lachnitt1,

Abdalrhman Mohamed2, Mudathir Mohamed2, Aina Niemetz1, Andres Nötzli1, Alex Ozdemir1,
Mathias Preiner1, Andrew Reynolds2, Ying Sheng1, Cesare Tinelli2, and Yoni Zohar5

1Stanford University
2The University of Iowa

3Universidade Federal de Minas Gerais
4City, University of London

5Bar-Ilan University

Abstract—This paper is a description of the CVC5 SMT solver
as entered into the 2022 SMT Competition. Here, we briefly
summarize the main techniques implemented by CVC5 that are
relevant. For more comprehensive information please refer to the
tool paper about CVC5 [15], our website [7], and the source code
on GitHub [6].

OVERVIEW

CVC5 is an open-source automatic theorem prover for SMT
problems. It can be used to prove the validity or, dually,
the satisfiability of first-order formulas in a large number
of built-in logical theories and combinations thereof. For
unsatisfiable formulas, CVC5 can be used to produce proofs
in multiple formats [16]. CVC5 is an open and extensible
SMT engine, and it can be used as a stand-alone tool or as a
library. There is essentially no limit on its use for research or
commercial purposes (see the section on its license below for
more information).

FEATURES

CVC5 is a CDCL(T )-based SMT solver that supports all
theories standardized in SMT-LIB. It uses a modified version of
MiniSat [28] as its CDCL(T ) SAT solver. Theory combination
is based on the polite combination framework [33, 41] using
care graphs [34, 35].

Linear Arithmetic CVC5’s solver for linear arithmetic imple-
ments a Simplex procedure [27]. It includes heuristics proposed
by Griggio [29]. Integers are handled by first solving the real
relaxation of the constraints, and then using a combination
of cuts from proofs of unsatisfiability [26] and branching to
ensure integer solutions [30]. Additionally, the branch-and-
bound method can optionally generate lemmas consisting of
ternary clauses inspired by unit-cube tests [20].

Non-linear Arithmetic For non-linear arithmetic, we use
strategies that are based on the combination of two indepen-
dent subsolvers. The first subsolver is based on incremental
linearization [22], where models are found for the linear
abstraction of the input formula, i.e., treating multiplication as
an uninterpreted function. Lemma schemas are then used to
state properties of multiplication in a counterexample-guided
fashion. Details on the lemma schemas used by this subsolver

are described in [46]. The second subsolver implements
cylindrical algebraic coverings [13] using the polynomial
arithmetic and other algebraic routines from libpoly [36].

We primarily invoke incremental linearization for non-linear
integer problems, and cylindrical algebraic decomposition for
non-linear real problems. We additionally invoke incomplete
techniques based on reductions to bit-vectors for non-linear
integer problems, and combinations of the two solvers described
above for non-linear real arithmetic.

Arrays The array solver implements a procedure inspired by
the one described in de Moura and Bjørner [24]. Optionally,
CVC5 reasons about arrays using an approach proposed by
Christ and Hoenicke to lazily instantiate lemmas based on
dependencies between arrays that differ in finitely many
indices [21].

Bit-Vectors CVC5’s bit-vector solver uses bit-blasting and
supports off-the-shelf SAT solvers such as CaDiCaL or Cryp-
toMiniSat [2] as SAT back-ends. In the current version, we
use CaDiCaL [18] by default. The new bit-blasting solver
seamlessly integrates into the CDCL(T ) infrastructure of CVC5
and fully supports the combination of bit-vectors with any
theory supported by CVC5.

Datatypes For handling quantifier-free constraints over
datatypes, we use a rule-based procedure that follows the calculi
described in [17, 42]. The procedure incorporates optimizations
for sharing selectors over multiple constructors [49].

Floating-Point Arithmetic CVC5 eagerly translates floating-
point expressions to the theory of bit-vectors. For that, it
integrates SymFPU [19], a C++ library of bit-vector encodings
of floating-point operations. Conversions between real and
floating-point numbers are handled lazily.

Strings CVC5’s string solver consists of multiple components.
At its core, the solver reasons about word equations [37].
The solver supplements reasoning about word equations with
reasoning about code points to handle conversions between
strings and integers efficiently [51]. The component responsible
for extended functions such as string replacement, lazily
reduces those functions to word equations after context-
dependent simplifications [47]. Skolem variables in the lemmas



produced by the reductions reuse existing Skolem variables
whenever possible for greater efficiency [52]. The regular
expression component unfolds and computes derivatives of
regular expressions [38]. The string solver incorporates aggres-
sive simplification rules that rely on abstractions to derive
facts about string terms [50]. Finally, the solver detects
conflicts eagerly on partial assignments from the SAT solver
by computing the congruence-closure and constant prefixes
and suffixes of string terms.

Uninterpreted Functions The theory solver for uninterpreted
functions resembles Simplify’s approach [25] and remains
largely unchanged. When combined with bit-vectors, CVC5
supports the Ackermannization and eager bit-blasting of
constraints involving uninterpreted functions and sorts [31].

Quantifiers For handling logics where quantifiers are present,
we rely on heuristic E-matching when they are combined with
uninterpreted functions [23]. This technique is supplemented by
conflict-based instantiation for detecting when an instantiation
is in conflict with the current set of assertions [44]. Our strategy
additionally incorporates finite model finding techniques, which
are useful for finding satisfiable instances [43]. We additionally
rely on enumerative approaches for instantiation when all other
techniques are incomplete [48].

For quantifiers over linear arithmetic, we use a specialized
counterexample-guided based approach for quantifier instantia-
tion [45]. An extension of this technique is used for quantified
bit-vector logics [39]. For other quantified logics in pure
background theories, e.g., over floating-point or non-linear
arithmetic, we use new techniques for syntax-guided quantifier
instantiation [40].

Decision Heuristic In addition to MiniSat’s decision heuristic,
CVC5 implements a separate heuristic that uses the original
Boolean structure of the input to keep track of the justified
parts of the input constraints, i.e., the parts where it can infer
the value of terms based on a (partial) assignment to subterms.
For decisions, it traverses assertions that are not satisfied under
the current assignment, computing the desired values (starting
with true as the desired value for the root) for each term until it
finds a literal that has not been assigned and would contribute
towards a desired value. The heuristic optionally prioritizes
assertions that led to decisions that resulted in a conflict. This
heuristic is a reimplementation and extension of a heuristic
implemented in CVC4 [14].

Unsat Cores CVC5 implements two approaches to compute
unsatisfiable cores: (i) assumption-based unsat cores (ii) proof-
based unsat cores. Both approaches use CVC5’s proof infrastruc-
ture. CVC5’s proof infrastructure generates fine-grained proofs
for unsatisfiable problems. The assumption-based approach
uses MiniSat’s support for computing unsatisfiable assumptions.
CVC5 uses the proof infrastructure to track the preprocessing of
assertions, sends the constraints as assumptions to MiniSat, and
retrieves the list of unsatisfiable assumptions after running its
regular solving procedure. The proof-based approach uses the
proof infrastructure to track preprocessing and the reasoning

done by the SAT solver. After the main solving procedure
finishes, it extracts the unsat core from the proof.

CONFIGURATIONS

CVC5 is entering all divisions of the single query, the
incremental, the unsat-core, and the model-validation tracks
of SMT-COMP 2022. We also enter two variants to the proof
exhibition track as explained below.

The branch used for all configurations is
smtcomp2022 [11]. We use a binary optimized for
reading input from files in a competition setting for all tracks
but the incremental track. For the incremental track, we
use a binary optimized for reading from interactive inputs.
For each track, we use a dedicated run script, which calls
CVC5 with parameters that depend on the logic used in
the input. For details about the parameters used for each
logic, please refer to the run scripts in the competition
branch [8, 9, 10, 12]. All configurations are compiled with the
optional dependencies CLN [1], glpk-cut-log [4] (a fork of
GLPK [5]), CaDiCaL (commit 8bc2c3b), SymFPU (commit
8fbe139), and libpoly (commit 1383809).

Single Query Track (CVC5) For the Single Query track, we
configure CVC5 for optimized reading from non-interactive
inputs. For certain logics, we try different options sequen-
tially (see runscript at [10]).

Incremental Track (CVC5-inc) For the Incremental track,
we configured CVC5 for optimized reading from interactive
inputs and use the default options for most logics. See the
runscript [8] for more details.

Unsat-Core Track (CVC5) For the Unsat Core track, we
configure CVC5 for optimized reading from non-interactive
inputs and use options similar to the ones used for the Single
Query Track (see runscript [12] for details). The submission
uses assumption-based unsat cores.

Model-Validation Track (CVC5) For the model-validation
track, we use a similar configuration as for the Single Query
track (see runscript [9] for details). For QF_LRA, we disable the
simplification of unconstrained terms since it is not compatible
with model generation.

Proof Exhibition Track (CVC5 and CVC5-lfsc) For the proof
exhibition track, CVC5 uses a new flexible proof-producing
architecture [16]. CVC5 can check proofs internally or produce
proofs in a format that can be checked using an external tool.
The internal proof checker checks proofs during construction.
If a user does not want to trust CVC5’s internal checker and
desires to check the proofs with an external checker, they
can use the other formats that CVC5 supports, namely LFSC
(described below) and Alethe.1 The internal proofs can also
be printed in a DOT format to facilitate visualization.2

CVC5 participates with two entries:

1See https://cvc5.github.io/docs/cvc5-1.0.0/proofs/output alethe.html
2See https://cvc5.github.io/docs/cvc5-1.0.0/proofs/output dot.html. One can

use a default DOT visualizer or the dedicated proof visualizer available at
https://ufmg-smite.github.io/proof-visualizer/

https://cvc5.github.io/docs/cvc5-1.0.0/proofs/output_alethe.html
https://cvc5.github.io/docs/cvc5-1.0.0/proofs/output_dot.html
https://ufmg-smite.github.io/proof-visualizer/


• the default CVC5 entry produces proofs in the internal
proof format of CVC5.
The format contains proof rules that very closely repre-
sent how CVC5 is solving the problem.3 A proof rule
application has the form

(RULENAME F1 ... Fn :args t1 ... tm)
where F1 ... Fn are the children proof rule applications,
t1 ... tm are the arguments terms, and RULENAME is a
function from the children and arguments to a conclusion
term. A proof is directed acyclic graph of proof rule
applications. Seen as a tree, the root necessarily has the
negation of the input formula as the conclusion, proven
to be unsatisfiable.
No external checker is used. The proofs are rather checked
during construction in CVC5 itself, so that if an invalid
proof is produced, CVC5 fails with an error message.

• the CVC5-lfsc entry produces proofs using the LFSC
framework [53]. LFSC is a logical framework, based
on Edinburgh LF [32], which was explicitly designed
to facilitate the production and checking of fine-grained
proofs in SMT. It comes with a small and efficient proof
checker,4 which is generic in the sense that it takes as input
both a proof term p and a proof signature, a definition
of the data types and proof rules used to construct p.
The checker verifies that p is well-formed with respect to
the provided signature. We have defined proof signatures
for most of the theories supported by CVC5.5 These
definitions can be combined together as needed to define a
proof system for any combination of those theories. When
emitting proofs in LFSC, CVC5 includes all the relevant
signatures as a preamble to the proof term.

COPYRIGHT AND LICENSE

CVC5 is copyright 2022 by its authors and contributors and
their institutional affiliations. For a full list of authors, refer to
the AUTHORS and THANKS files distributed with the source
code [6].

The source code of CVC5 is open and available to students,
researchers, software companies, and everyone else to study,
to modify, and to redistribute original or modified versions;
distribution is under the terms of the modified BSD license.
Please note that CVC5 can be configured (however, by default it
is not) to link against some GPLed libraries, and therefore the
use of these builds may be restricted in non-GPL-compatible
projects. For more information about CVC5’s license refer to
the actual license text as distributed with its source code [6].

ACKNOWLEDGMENTS

CVC5 is supported in part by the organizations listed on our
website [3].

3The rules are described in detail at https://cvc5.github.io/docs/cvc5-1.0.0/
proofs/proof rules.html.

4Available at https://github.com/cvc5/LFSC.
5Available at https://github.com/cvc5/cvc5/tree/main/proofs/lfsc/signatures.

REFERENCES

[1] CLN. https://ginac.de/CLN/, 2020.
[2] CryptoMiniSat. https://github.com/msoos/cryptominisat,

2020.
[3] cvc5 acknowledgments. https://cvc5.github.io/

acknowledgements.html, 2020.
[4] glpk-cut-log. https://github.com/timothy-king/

glpk-cut-log, 2020.
[5] GLPK. https://www.gnu.org/software/glpk/, 2020.
[6] CVC5 source code. https://github.com/cvc5/cvc5, 2021.
[7] CVC5 website. https://cvc5.github.io/, 2021.
[8] cvc5 SMT-COMP 2022 Incremental Track

run script. https://github.com/cvc5/cvc5/blob/
smtcomp2022/contrib/competitions/smt-comp/
run-script-smtcomp-current-incremental, 2022.

[9] cvc5 SMT-COMP 2022 Model Validation Track
run script. https://github.com/cvc5/cvc5/blob/
smtcomp2022/contrib/competitions/smt-comp/
run-script-smtcomp-current-model-validation, 2022.

[10] cvc5 SMT-COMP 2022 Single Query run script.
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/
competitions/smt-comp/run-script-smtcomp-current,
2022.

[11] cvc5 SMT-COMP 2022 branch. https://github.com/cvc5/
cvc5/tree/smtcomp2022, 2022.

[12] cvc5 SMT-COMP 2022 Unsat Core Track
run script. https://github.com/cvc5/cvc5/blob/
smtcomp2022/contrib/competitions/smt-comp/
run-script-smtcomp-current-unsat-cores, 2022.

[13] Erika Ábrahám, James H. Davenport, Matthew England,
and Gereon Kremer. Deciding the consistency of non-
linear real arithmetic constraints with a conflict driven
search using cylindrical algebraic coverings. J. Log.
Algebraic Methods Program., 119:100633, 2021. doi:
10.1016/j.jlamp.2020.100633. URL https://doi.org/10.
1016/j.jlamp.2020.100633.

[14] Kshitij Bansal. A branching heuristic in cvc4 smt
solver. https://kshitij.io/articles/cvc4-branching-heuristic.
pdf, 2012.

[15] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon
Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman
Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds,
Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
versatile and industrial-strength SMT solver. In TACAS
(1), volume 13243 of Lecture Notes in Computer Science,
pages 415–442. Springer, 2022.

[16] Haniel Barbosa, Andrew Reynolds, Gereon Kremer,
Hanna Lachnitt, Aina Niemetz, Andres Nötzli, Alex
Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott
Viteri, Yoni Zohar, Cesare Tinelli, and Clark Barrett.
Flexible proof production in an industrial-strength SMT
solver. In IJCAR, 2022.

[17] Clark Barrett, Igor Shikanian, and Cesare Tinelli. An
abstract decision procedure for a theory of inductive data

https://cvc5.github.io/docs/cvc5-1.0.0/proofs/proof_rules.html
https://cvc5.github.io/docs/cvc5-1.0.0/proofs/proof_rules.html
https://github.com/cvc5/LFSC
https://github.com/cvc5/cvc5/tree/main/proofs/lfsc/signatures
https://ginac.de/CLN/
https://github.com/msoos/cryptominisat
https://cvc5.github.io/acknowledgements.html
https://cvc5.github.io/acknowledgements.html
https://github.com/timothy-king/glpk-cut-log
https://github.com/timothy-king/glpk-cut-log
https://www.gnu.org/software/glpk/
https://github.com/cvc5/cvc5
https://cvc5.github.io/
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-incremental
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-incremental
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-incremental
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-model-validation
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-model-validation
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-model-validation
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/cvc5/cvc5/tree/smtcomp2022
https://github.com/cvc5/cvc5/tree/smtcomp2022
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-unsat-cores
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-unsat-cores
https://github.com/cvc5/cvc5/blob/smtcomp2022/contrib/competitions/smt-comp/run-script-smtcomp-current-unsat-cores
https://doi.org/10.1016/j.jlamp.2020.100633
https://doi.org/10.1016/j.jlamp.2020.100633
https://kshitij.io/articles/cvc4-branching-heuristic.pdf
https://kshitij.io/articles/cvc4-branching-heuristic.pdf


types. JSAT, 3(1-2):21–46, 2007. URL http://jsat.ewi.
tudelft.nl/content/volume3/JSAT3 3 Barrett.pdf.

[18] Armin Biere, Katalin Fazekas, Mathias Fleury, and
Maximillian Heisinger. CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition
2020. In Tomas Balyo, Nils Froleyks, Marijn Heule,
Markus Iser, Matti Järvisalo, and Martin Suda, editors,
Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, volume B-2020-1 of Department of Com-
puter Science Report Series B, pages 51–53. University
of Helsinki, 2020.

[19] Martin Brain, Florian Schanda, and Youcheng Sun. Build-
ing better bit-blasting for floating-point problems. In
TACAS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I, volume 11427 of LNCS, pages 79–
98. Springer, 2019. doi: 10.1007/978-3-030-17462-0\ 5.
URL https://doi.org/10.1007/978-3-030-17462-0 5.

[20] Martin Bromberger and Christoph Weidenbach. Fast cube
tests for LIA constraint solving. In IJCAR, volume 9706
of Lecture Notes in Computer Science, pages 116–132.
Springer, 2016.

[21] Jürgen Christ and Jochen Hoenicke. Weakly equivalent
arrays. In FroCos, volume 9322 of Lecture Notes in
Computer Science, pages 119–134. Springer, 2015.

[22] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco
Roveri, and Roberto Sebastiani. Invariant checking of
NRA transition systems via incremental reduction to LRA
with EUF. In Axel Legay and Tiziana Margaria, editors,
Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017,
Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I, volume 10205 of
Lecture Notes in Computer Science, pages 58–75, 2017.
doi: 10.1007/978-3-662-54577-5\ 4. URL https://doi.
org/10.1007/978-3-662-54577-5 4.

[23] Leonardo Mendonça de Moura and Nikolaj Bjørner.
Efficient e-matching for SMT solvers. In Frank Pfenning,
editor, Automated Deduction - CADE-21, 21st Inter-
national Conference on Automated Deduction, Bremen,
Germany, July 17-20, 2007, Proceedings, volume 4603
of Lecture Notes in Computer Science, pages 183–198.
Springer, 2007. doi: 10.1007/978-3-540-73595-3\ 13.
URL https://doi.org/10.1007/978-3-540-73595-3 13.

[24] Leonardo Mendonça de Moura and Nikolaj Bjørner.
Generalized, efficient array decision procedures. In
FMCAD, pages 45–52. IEEE, 2009.

[25] David Detlefs, Greg Nelson, and James B. Saxe. Simplify:
a theorem prover for program checking. J. ACM, 52(3):
365–473, 2005.

[26] Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from
proofs: a complete and practical technique for solving
linear inequalities over integers. Formal Methods Syst.
Des., 39(3):246–260, 2011.

[27] Bruno Dutertre and Leonardo Mendonça de Moura. A
fast linear-arithmetic solver for DPLL(T). In CAV, volume

4144 of Lecture Notes in Computer Science, pages 81–94.
Springer, 2006.

[28] Niklas Eén and Niklas Sörensson. An extensible sat-
solver. In SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

[29] Alberto Griggio. An Effective SMT Engine for Formal
Verification. PhD thesis, University of Trento, Italy, 2009.

[30] Alberto Griggio. A practical approach to satisfiability
modulo linear integer arithmetic. Journal on Satisfiability,
Boolean Modeling and Computation, 8(1-2):1–27, 2012.

[31] Liana Hadarean. An efficient and trustworthy theory
solver for bit-vectors in satisfiability modulo theories.
PhD thesis, Citeseer, 2015.

[32] Robert Harper, Furio Honsell, and Gordon D. Plotkin. A
framework for defining logics. J. ACM, 40(1):143–184,
1993.

[33] Dejan Jovanovic and Clark W. Barrett. Polite theories
revisited. In LPAR (Yogyakarta), volume 6397 of Lecture
Notes in Computer Science, pages 402–416. Springer,
2010.

[34] Dejan Jovanovic and Clark W. Barrett. Sharing is caring:
Combination of theories. In FroCoS, volume 6989 of
Lecture Notes in Computer Science, pages 195–210.
Springer, 2011.

[35] Dejan Jovanovic and Clark W. Barrett. Being careful
about theory combination. Formal Methods Syst. Des.,
42(1):67–90, 2013.

[36] Dejan Jovanovic and Bruno Dutertre. Libpoly: A library
for reasoning about polynomials. In Proc. 15th Interna-
tional Workshop on Satisfiability Modulo Theories (SMT
2017), number 1889, 2017.

[37] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W.
Barrett, and Morgan Deters. A DPLL(T) theory solver
for a theory of strings and regular expressions. In CAV,
volume 8559 of Lecture Notes in Computer Science, pages
646–662. Springer, 2014.

[38] Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds,
Cesare Tinelli, and Clark W. Barrett. A decision procedure
for regular membership and length constraints over
unbounded strings. In FroCos, volume 9322 of Lecture
Notes in Computer Science, pages 135–150. Springer,
2015.

[39] Aina Niemetz, Mathias Preiner, Andrew Reynolds,
Clark W. Barrett, and Cesare Tinelli. Solving quanti-
fied bit-vectors using invertibility conditions. In Hana
Chockler and Georg Weissenbacher, editors, Computer
Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part II, volume 10982 of Lecture Notes in Computer
Science, pages 236–255. Springer, 2018. doi: 10.1007/
978-3-319-96142-2\ 16. URL https://doi.org/10.1007/
978-3-319-96142-2 16.

[40] Aina Niemetz, Mathias Preiner, Andrew Reynolds,
Clark W. Barrett, and Cesare Tinelli. Syntax-guided
quantifier instantiation. In Jan Friso Groote and Kim Guld-

http://jsat.ewi.tudelft.nl/content/volume3/JSAT3_3_Barrett.pdf
http://jsat.ewi.tudelft.nl/content/volume3/JSAT3_3_Barrett.pdf
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16


strand Larsen, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 27th International
Conference, TACAS 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings, Part II, volume 12652
of Lecture Notes in Computer Science, pages 145–163.
Springer, 2021. doi: 10.1007/978-3-030-72013-1\ 8.
URL https://doi.org/10.1007/978-3-030-72013-1 8.

[41] Silvio Ranise, Christophe Ringeissen, and Calogero G.
Zarba. Combining data structures with nonstably infinite
theories using many-sorted logic. In FroCoS, volume
3717 of Lecture Notes in Computer Science, pages 48–64.
Springer, 2005.

[42] Andrew Reynolds and Jasmin Christian Blanchette. A
decision procedure for (co)datatypes in SMT solvers. In
Amy P. Felty and Aart Middeldorp, editors, Automated
Deduction - CADE-25 - 25th International Conference
on Automated Deduction, Berlin, Germany, August 1-7,
2015, Proceedings, volume 9195 of Lecture Notes in
Computer Science, pages 197–213. Springer, 2015. doi:
10.1007/978-3-319-21401-6\ 13. URL https://doi.org/10.
1007/978-3-319-21401-6 13.

[43] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava
Krstic, Morgan Deters, and Clark W. Barrett. Quan-
tifier instantiation techniques for finite model finding
in SMT. In Maria Paola Bonacina, editor, Automated
Deduction - CADE-24 - 24th International Conference
on Automated Deduction, Lake Placid, NY, USA, June
9-14, 2013. Proceedings, volume 7898 of Lecture Notes
in Computer Science, pages 377–391. Springer, 2013. doi:
10.1007/978-3-642-38574-2\ 26. URL https://doi.org/10.
1007/978-3-642-38574-2 26.

[44] Andrew Reynolds, Cesare Tinelli, and
Leonardo Mendonça de Moura. Finding conflicting
instances of quantified formulas in SMT. In Formal
Methods in Computer-Aided Design, FMCAD 2014,
Lausanne, Switzerland, October 21-24, 2014, pages 195–
202. IEEE, 2014. doi: 10.1109/FMCAD.2014.6987613.
URL https://doi.org/10.1109/FMCAD.2014.6987613.

[45] Andrew Reynolds, Tim King, and Viktor Kuncak. Solving
quantified linear arithmetic by counterexample-guided
instantiation. Formal Methods Syst. Des., 51(3):500–532,
2017. doi: 10.1007/s10703-017-0290-y. URL https://doi.
org/10.1007/s10703-017-0290-y.

[46] Andrew Reynolds, Cesare Tinelli, Dejan Jovanovic, and
Clark W. Barrett. Designing theory solvers with ex-
tensions. In Clare Dixon and Marcelo Finger, editors,
Frontiers of Combining Systems - 11th International
Symposium, FroCoS 2017, Brası́lia, Brazil, September 27-
29, 2017, Proceedings, volume 10483 of Lecture Notes
in Computer Science, pages 22–40. Springer, 2017. doi:
10.1007/978-3-319-66167-4\ 2. URL https://doi.org/10.
1007/978-3-319-66167-4 2.

[47] Andrew Reynolds, Maverick Woo, Clark W. Barrett,
David Brumley, Tianyi Liang, and Cesare Tinelli. Scaling

up DPLL(T) string solvers using context-dependent sim-
plification. In CAV (2), volume 10427 of Lecture Notes
in Computer Science, pages 453–474. Springer, 2017.

[48] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine.
Revisiting enumerative instantiation. In Dirk Beyer and
Marieke Huisman, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 24th International
Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, Part II, volume 10806 of Lecture Notes in
Computer Science, pages 112–131. Springer, 2018. doi:
10.1007/978-3-319-89963-3\ 7. URL https://doi.org/10.
1007/978-3-319-89963-3 7.

[49] Andrew Reynolds, Arjun Viswanathan, Haniel Barbosa,
Cesare Tinelli, and Clark W. Barrett. Datatypes with
shared selectors. In Didier Galmiche, Stephan Schulz,
and Roberto Sebastiani, editors, Automated Reasoning -
9th International Joint Conference, IJCAR 2018, Held
as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, volume 10900
of Lecture Notes in Computer Science, pages 591–608.
Springer, 2018. doi: 10.1007/978-3-319-94205-6\ 39.
URL https://doi.org/10.1007/978-3-319-94205-6 39.

[50] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and
Cesare Tinelli. High-level abstractions for simplifying
extended string constraints in SMT. In CAV (2), volume
11562 of Lecture Notes in Computer Science, pages 23–42.
Springer, 2019.

[51] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and
Cesare Tinelli. A decision procedure for string to code
point conversion. In IJCAR (1), volume 12166 of Lecture
Notes in Computer Science, pages 218–237. Springer,
2020.

[52] Andrew Reynolds, Andres Nötzli, Clark W. Barrett,
and Cesare Tinelli. Reductions for strings and regular
expressions revisited. In FMCAD, pages 225–235. IEEE,
2020.

[53] Aaron Stump, Duckki Oe, Andrew Reynolds, Liana
Hadarean, and Cesare Tinelli. SMT proof checking using
a logical framework. Formal Methods in System Design,
42(1):91–118, 2013. doi: 10.1007/s10703-012-0163-3.

https://doi.org/10.1007/978-3-030-72013-1_8
https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-94205-6_39

