
The OSTRICH String Solver
Taolue Chen, Riccardo De Masellis, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu

Shuanglong Kan, Anthony W. Lin, Oliver Markgraf, Philipp Rümmer, Amanda Stjerna, Zhilin Wu

Abstract—This paper gives a high-level overview of the
string solver OSTRICH version 1.2, a solver entering SMT-
COMP 2022. For more details and theoretical results we re-
fer to the full version of the paper [4] and to the website
https://github.com/uuverifiers/ostrich.

I. OVERVIEW

OSTRICH is a string solver designed for solving constraints
that occur during program analysis. OSTRICH is built on
top of the SMT solver Princess [8] and uses the BRICS
Automata library [1] to handle regular expressions inside the
string formulas. OSTRICH accepts constraints written using
the SMT-LIB theory of strings and supports most operators of
the theory. The main algorithm implemented in OSTRICH is
the background propagation procedure [4], which guarantees
completeness of the solver for input formulas in the straight-
line fragment of the theory of strings. Some formulas outside
of that fragment may still be solved by alternative approaches
implemented in OSTRICH, which guarantee soundness (cor-
rectness of solutions, and correctness of unsat results), but not
completeness.

In addition to standardized SMT-LIB operators, OSTRICH
can handle a number of further functions, such as transducers
and the string reverse operation. Furthermore, OSTRICH allows
users to add their own string functions, as long as they provide
an implementation of pre-image computation [4]. OSTRICH
can also process regular expressions that include capture
groups, lazy quantifiers, and anchors, although this is still at a
more experimental stage [3]. For this functionality, OSTRICH
understands a number of additional regular expression operators,
and it includes a parser for JavaScript regular expression. Those
features will not be evaluated, however, at SMT-COMP 2022.

The signature part of the algorithm is the backwards
propagation, which is one of the contributions in the main
paper on OSTRICH [4]. Additionally, many more optimizations
have been implemented, such as a preprocessor and a formula
simplifier which are called before and during the main loop
of the string solver. OSTRICH was also extended to reason
about string formulas by extracting length constraints from
those formulas. Finally, more general word equations can be
handled by the application of Nielsen’s transformation [7], [5].

II. STRAIGHT-LINE FORMULAS

Straight-line formulas are conjunctions of string constraints
that can be represented in the form of straight-line pro-
grams S [4]:

S ::= x := f(x̄) | assert(R(x̄)) | S;S

where f denotes n-ary string functions, for instance concate-
nation, replace, replace-all, reverse, or any function that can
be represented by (one-way or two-way) transducers, and R is
a recognisable relation represented by a collection of tuples
of finite automata. The statements in a straight-line program
have to be sorted topologically, which means that a variable x
must never occur prior to an assignment to x.

Example 1. The following program gives rise to a string
formula in the straight-line fragment:

z1 = x ◦ y ; z2 = y ◦ x ; assert(z1 ∈ L↔ z2 ∈ L)

Note that variables z1, z2 are only referred to after their
definition, whereas x, y are input variables that are never
assigned (and therefore might have any value). The asser-
tion z1 ∈ L↔ z2 ∈ L is a recognisable relation. The string
formula corresponding to the program is z1 = x ◦ y ∧ z2 =
y ◦ x ∧ (z1 ∈ L↔ z2 ∈ L).

We note that straight-line fragments are empirically shown
to occupy the bulk of the existing benchmarks. For example,
even many length constraints (e.g. |x| > 20∨|y| ≤ 30) turn out
to exist in a form that can be converted into regular constraints
(a.k.a. monadically decomposable); see [6].

III. BACKWARDS PROPAGATION

Backwards propagation is a decision procedure for straight-
line formulas [4]. The main idea of backwards propagation
is to systematically compute pre-images of regular expression
constraints under the functions occurring in a straight-line
program, and this way infer necessary and sufficient constraints
on the input variables for the program to succeed. In Example 1,
this means that constraints about x, y are derived from the
assertion and the two assignments. For a word equation
like z1 = x ◦ y, constraints about z1 are propagated to obtain
constraints about x, y; a non-deterministic choice has to be
made in this process which part of z1 is assigned to x and
which to y, leading to proof branching. Throughout backwards
propagation, the consistency of derived constraints for the
different variables is checked to assess whether the formula
is satisfiable. Backwards propagation also takes into account
length information for the string variables, which may lead to
an early termination of the branch due to inconsistent word
lengths.

IV. COMPLEMENTARY PROOF RULES AND OPTIMIZATIONS

In OSTRICH, backwards propagation is applied as the last
step of the string solver, after all other proof rules have been
applied exhaustively to a formula. This is because backwards

propagation is a decision procedure for straight-line formulas,
but it cannot be applied to any formula outside of the fragment;
backwards propagation also sometimes exhibits high runtime
due to the necessary internal splitting. We therefore complement
backwards propagation with various other proof rules that
have the goal of detecting obvious cases of unsatisfiability, or
converting formulas into straightline formulas.

One of the first things to happen in the solver are optimiza-
tions in the preproccessor and the formula reducer, which have
the goal to simplify string formulas. The applied rewriting
rules cover various special cases, as well as many cases of
operations that can be reduced to regular language membership
or word equations. Examples are functions with trivial input,
such as (str.prefixof x "A"), which can be turned
into a regular constraint about x; or (str.prefixof x
x), which can immediately be reduced to true. Some
reductions are done immediately after parsing the input and are
independent of the rest of the formula; other reductions happen
during the execution of the string solver (“in-processing”), and
are aware of their context. An example of one of the latter
transformations is the translation of (str.prefixof x y)
to word equations, which depends on whether the translated
atom occurs positively or negatively.

Prior to calling backwards propagation, OSTRICH also
reasons about length constraints induced by the various string
operations, and ensures the consistency of such constraints.
One example for this are word equations x = y, which
imply that |x| = |y|. This equation about word length can
be used to derive a contradiction if it is known that x and
y have different lengths. Length information is also used
to guide backwards propagation and the use of Nielsen’s
transformation, described below. Optionally, in addition to
length information also induced equations about the number
of character occurrences in variables (representing components
of the Parikh image) are added.1

Nielsen’s transformation is applied before the backwards
propagation is called, and decomposes word equations into
(hopefully) simpler equations. The variant of Nielsen’s trans-
formation implemented in OSTRICH applies to string equa-
tions x ◦ t = y1 ◦ · · · ◦ yn, picks one of the right-hand side
variables yi, and splits the proof into two cases:

x = y1 ◦ · · · ◦ y′i ∧ t = y′′i ◦ · · · ◦ yn ∧ yi = y′i ◦ y′′i (1)
|x| < |y1 ◦ · · · ◦ yi−1| ∨ |x| > |y1 ◦ · · · ◦ yi| (2)

The choice of the variable yi to split into y′i, y
′′
i is done based

on the available length information, by first computing a model
of all length constraints, and following the arrangement implied
by this model [2].

Length constraints are also used to justify the application
of more efficient decomposition rules when possible. For
example, the word equation a ◦ b = c ◦ d can directly be
decomposed to a = c∧b = d if it can be derived that |a| = |c|;
such decomposition avoids proof branching, and is therefore
preferred over Nielsen’s transformation.

1This can be enabled using option +parikh.

x0y = 11z

0y = 11z

|x| < |1|

0y = 1z

|x| = |1|

x = 1x′ ∧ x′0y = 1z

|x| > |1|

Fig. 1: One step in Nielsen’s transformation.

Example 2. Figure 1 illustrates one step of Nielsen’s trans-
formation for the word equation x0y = 11z where x, y, z are
string variables and 0, 1 are string constants. When no length
information is available then the transformation guesses the
length of the leftmost symbols and decomposes the equation
based on the guess. In this example the leftmost branch and
the middle branch lead to unsatisfiable word equations and
are terminated. The execution of Nielsen’s transformation
continues then with the right branch and finds a solution
x 7→ 11, y 7→ ε,z 7→ 0.

V. OSTRICH AT SMT-COMP 2022

We are submitting the recently released version 1.2 of
OSTRICH in the single-query track divisions QF_S, QF_SLIA,
QF_SNIA. This version is linked against Princess 2022-07-01
and the BRICS automata library 1.11-8. The submitted version
of OSTRICH is configured to use the option +parikh to
switch on partial Parikh reasoning, see Section IV, otherwise
it uses default options.

REFERENCES

[1] Brics automaton. https://www.brics.dk/automaton/index.html, accessed:
2022-06-23

[2] Abdulla, P.A., Atig, M.F., Chen, Y., Holík, L., Rezine, A., Rümmer, P.,
Stenman, J.: Norn: An SMT solver for string constraints. In: Kroening, D.,
Pasareanu, C.S. (eds.) Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
462–469. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_29,
https://doi.org/10.1007/978-3-319-21690-4_29

[3] Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin,
A.W., Rümmer, P., Wu, Z.: Solving string constraints with regex-dependent
functions through transducers with priorities and variables. Proc. ACM
Program. Lang. 6(POPL), 1–31 (2022). https://doi.org/10.1145/3498707,
https://doi.org/10.1145/3498707

[4] Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures
for path feasibility of string-manipulating programs with complex oper-
ations. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

[5] Diekert, V.: Makanin’s Algorithm. In: Lothaire, M. (ed.) Algebraic Com-
binatorics on Words, Encyclopedia of Mathematics and its Applications,
vol. 90, chap. 12, pp. 387–442. Cambridge University Press (2002)

[6] Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Monadic decomposition in
integer linear arithmetic. In: Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part I. pp. 122–140 (2020). https://doi.org/10.1007/978-3-030-51074-9_8,
https://doi.org/10.1007/978-3-030-51074-9_8

[7] Lentin, A.: Equations dans les Monoides Libres. Gauthier-Villars, Paris
(1972)

[8] Rümmer, P.: A constraint sequent calculus for first-order logic with linear
integer arithmetic. In: International Conference on Logic for Programming
Artificial Intelligence and Reasoning. pp. 274–289. Springer (2008)

https://www.brics.dk/automaton/index.html
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-51074-9_8

	Overview
	Straight-line Formulas
	Backwards Propagation
	Complementary Proof Rules and Optimizations
	OSTRICH at SMT-COMP 2022
	References

