
NRA-LS at the SMT Competition 2022

Minghao Liu1,3, Fuqi Jia1,3, Rui Han1,3, Yu Zhang2,3,
Pei Huang1,3, Feifei Ma1,2,3, and Jian Zhang1,3

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 Laboratory of Parallel Software and Computational Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China
{liumh,jiafq,maff}@ios.ac.cn

1 Introduction

Satisfiability modulo theory (SMT) solving for quantifier-free formulas in non-
linear real arithmetic (QF NRA) is important in many applications. State-of-the-
art SMT solvers have made great progress to solve this problem. However, the
time and memory usage of them on some hard instances may be unacceptable,
especially when high-order polynomials appear in the formula. NRA-LS is an
SMT solver for QF NRA theory, which can improve the performance on some
high-order satisfiable instances through a local search (LS) algorithm. NRA-LS
wraps CVC5-1.0.01 as the back-end solver.

2 Architecture of NRA-LS

The framework of NRA-LS is shown in Algorithm 1. At the beginning, the
maximum order of polynomials in the formula is computed, and those formulas
will be handled specially if they contain high-order polynomials, which means
the order is larger than 10 in the implementation.

Initial model generation. NRA-LS tries to assign values to the variables,
evaluates the level to which the assertions are satisfied, and adjusts the values.
Then the top-k assignments are output as initial models. However, these ‘models’
cannot satisfy all the assertions in most cases, so NRA-LS makes fewer variables
fixed and tests the satisfiability of a set of sub-formulas.

Sub-formulas Testing. Given an initial model, NRA-LS calls back-end solver
to test if the model is valid by appending additional assertions to the original
formula. If unsat is returned, NRA-LS will reduce the number of fixed variables,
and test the new sub-formula iteratively until getting sat or the time limit is
exceeded. If sat is returned, the original formula is also satisfiable.

1 https://github.com/cvc5/cvc5.



2 M. Liu et al.

Algorithm 1 Framework of NRA-LS

Input: an SMT(QF NRA) formula ϕ
Output: sat/unsat/unknown

1: if ϕ contains high-order polynomial then
2: S1, S2, . . . , Sk ← generate init model(ϕ);
3: for i from 1 to k do
4: for num fixed vars from #var(ϕ) to 1 do
5: ϕ′ ← generate sub formula(ϕ, Si, num fixed vars);
6: res← run back end solver(ϕ′);
7: if res = sat then
8: return res;
9: else if res = unsat then
10: continue;
11: else
12: break;
13: end if
14: end for
15: end for
16: end if
17: return run back end solver(ϕ);

Time slots assignment. To solve the SMT formulas with high-order polyno-
mials, NRA-LS assigns the time slots into three parts. Suppose the time limit
to solve a single formula is T . First, it takes 5%T to run back-end solver on
the original formula, which aims to exclude those easy benchmarks. Next, the
time limit for each attempt that tests a sub-formula is set to 2.5%T . Finally, if
the result cannot be determined, the rest of the time is assigned to run back-
end solver on the original formula. Besides, for those SMT formulas without
high-order polynomials, all time slots are assigned to back-end solver directly.

3 Project Website

More information and resources of NRA-LS are available on the website:

https://github.com/minghao-liu/NRA-LS.


