
17th International Satisfiability Modulo Theories
Competition (SMT-COMP 2022): Rules and Procedures

Haniel Barbosa (chair)
Universidade Federal de Minas Gerais

Brazil
hbarbosa@dcc.ufmg.br

François Bobot
CEA List

France
https://github.com/bobot

Jochen Hoenicke
Universität Freiburg

Germany
hoenicke@informatik.uni-freiburg.de

This version revised 2022-6-23

Comments on this document should be emailed to the SMT-COMP mailing list (see below) or, if
necessary, directly to the organizers.

1 Communication
Interested parties should subscribe to the SMT-COMP mailing list. Important late-breaking news
and any necessary clarifications and edits to these rules will be announced there, and it is the
primary way that such announcements will be communicated.

• SMT-COMP mailing list: smt-comp@cs.nyu.edu

• Sign-up site for the mailing list: http://cs.nyu.edu/mailman/listinfo/smt-comp

Additional material will be made available at the competition web site, http://www.smtcomp.org.

1

mailto:hbarbosa@dcc.ufmg.br
mailto:Francois.BOBOT@cea.fr
mailto:hoenicke@informatik.uni-freiburg.de
mailto:smt-comp@cs.nyu.edu
http://cs.nyu.edu/mailman/listinfo/smt-comp
http://www.smtcomp.org

2 Important Dates
Mar 15 Deadline for new benchmark contributions.

May 28 Final versions of competition tools (e.g., benchmark scrambler) are made available. Bench-
mark libraries are frozen.

June 18 Deadline for first versions of solvers (for all tracks), including information about which
tracks and divisions are being entered, and magic numbers for benchmark scrambling.

July 2 Deadline for final versions of solvers, including system descriptions.

July 5 Opening value of NYSE Composite Index used to compute random seed for competition
tools.

August 11/12 SMT Workshop; end of competition, presentation of results.

3 Introduction
The annual Satisfiability Modulo Theories Competition (SMT-COMP) is held to spur advances
in SMT solver implementations on benchmark formulas of practical interest. Public competi-
tions are a well-known means of stimulating advancement in software tools. For example, in
automated reasoning, the CASC and SAT competitions for first-order and propositional reason-
ing tools, respectively, have spurred significant innovation in their fields [6, 13]. More informa-
tion on the history and motivation for SMT-COMP can be found at the competition web site,
http://www.smtcomp.org, and in reports on previous competitions ([2, 3, 4, 5, 10, 11, 12]).

SMT-COMP 2022 is part of the SMT Workshop 2022 (http://smt-workshop.cs.uiowa.edu/
2022/), which is affiliated with IJCAR 2022 (https://easychair.org/smart-program/IJCAR2022/).
The SMT Workshop will include a block of time to present the results of the competition. Accord-
ingly, researchers are highly encouraged to submit both new benchmarks and new or improved
solvers to raise the level of competition and advance the state of the art in automated SMT prob-
lem solving.

SMT-COMP 2022 will have seven tracks: the Single Query Track (before 2019: Main Track),
the Incremental Track (before 2019: Application Track), the Unsat-Core Track, the Model-Validation
Track, the Parallel Track and the Cloud Track (both sponsered by Amazon Web Services), and an
experimental Proof Exhibition Track focused on a qualitative evaluation of different proof for-
mats, proof checkers and proof-producing solvers. Within each track there are multiple divisions,
where each division uses benchmarks from a specific group of SMT-LIB logics. We will recognize
winners in all tracks but the Proof Exhibition Track. They will be determined by the number of
benchmarks solved (taking into account the weighting detailed in Section 7); we will also recog-
nize solvers based on additional criteria.

The rest of this document, revised from the previous version,1 describes the rules and competi-
tion procedures for SMT-COMP 2022.

1Earlier versions of this document include contributions from Clark Barrett, Roberto Bruttomesso, David Cok,
Sylvain Conchon, David Déharbe, Morgan Deters, Alberto Griggio, Liana Hadarean, Matthias Heizmann, Antti Hy-
varinen, Aina Niemetz, Albert Oliveras, Giles Reger, Aaron Stump, and Tjark Weber.

2

http://www.smtcomp.org
http://smt-workshop.cs.uiowa.edu/2022/
http://smt-workshop.cs.uiowa.edu/2022/
https://easychair.org/smart-program/IJCAR2022/

As in previous years, we have revised the rules slightly. Some rule changes in 2022 are designed
to improve how logics are organized into divisions. We have also added more divisions to the
Model-Validation Track and have defined a new Proof Exhibition Track. The principal changes
from the previous competition rules are the following:

• Changes in divisions. Last year we changed divisions to be composed of one or more related
logics. This year we will keep this organization but we will separate logics into divisions
slightly differently: we will have a QF Datatypes division with the logics QF DT, QF UFDT
and the QF Equality division now only contains the QF UF and QF AX logics.

Rationale: The feedback from the participants in last year’s competition was that datatypes
were too dissimilar from QF UF and QF AX to be organized in the same division.

• Logics can be non-competitive in competitive divisions. Last year we considered every
logic within a division to competitive unless the division as whole was non-competitive. This
year if a logic is non-competitive within a division (i.e., only one competitive solver enrolled
in it), it will not be ran.

Rationale: We believe the previous setup could benefit too much a solver that supports
more logics that its competitor. In particular there was a whose winner was defined by
the benchmarks of a non-competitive logic, which we believe is not ideal. Note that the
incentive for solvers to support more logics continues since as soon as there is more than one
solver supporting a logic it will be competitive and the solver that does not support it will be
disadvantaged.

• Model-Validation Track. Last year’s competition introduced the experimental divi-
sions QF Equality (only with QF UF benchmarks), QF Equality+LinearArith (only with
QF UFIDL, QF UFLIA, and QF UFLRA benchmarks), and QF Equality+Bitvec (only
with QF UFBV benchmarks). This year these divisions will no longer be experimental. In
addition, we add this year the new experimental division QF FPArith (excluding the logics
QF ABVFP, QF AUFBVFP, and QF ABVFPLRA).

Rationale: Last year’s divisions ran successfully, so there is no reason to keep them exper-
imental. For the new divisions, as before, given the inconsistencies across different model
producing solvers, we proceed in an experimental fashion to push for model standardization.
We exclude logics containing arrays since their model production adds further complications
which we only intend to tackle in the future.

• Proof Exhibition Track. This track will be introduced this year. Teams can submit proof-
producing solvers together with proof checkers for their proof formats. The checker and
format do not need to be from the same team as the solver. We will compile and present the
results, as well as assemble a panel of non-organizer experts to do a qualitative assessment
for each proof-producing solver, proof format, and proof checker. The solver, proof format
and checker should be described in a system description (total of 4 pages rather than 2).

Rationale: Given the many competing visions on how SMT proofs or a proof competition
should look like, we decided to be less prescriptive and more descriptive for how SMT-
COMP will approach proofs. We will host a “proof exhibition” rather than a “proof com-

3

petition” track. The format would be with teams submitting both a proof-producing SMT
solver and a proof checker for its proofs.

4 Entrants

SMT Solver. A Satisfiability Modulo Theories (SMT) solver that can enter SMT-COMP is a
tool that can determine the (un)satisfiability of benchmarks from the SMT-LIB benchmark library
(https://smtlib.cs.uiowa.edu/benchmarks.shtml).

Portfolio Solver. A portfolio solver is a solver using a combination of two or more sub-solvers,
developed by different groups of authors, on the same component or abstraction of the input prob-
lem. For example, a solver using one subsolver to solve the ground abstraction of a quantified
problem is allowed, while a solver using two or more subsolvers from different groups of authors
is not. Portfolio solver are in general allowed only in the Parallel Track and Cloud Track. If
you are unsure if your tool is a portfolio solver according to this definition and you feel that it
should be allowed contact the organizers of the SMT-COMP for clarification.

Wrapper Tool. A wrapper tool is defined as any solver that calls one or more other SMT solvers
(the wrapped solvers). Its system description must explicitly acknowledge and state the exact
version of any solvers that it wraps. It should further make clear technical innovations by which
the wrapper tool expects to improve on the wrapped solvers.

Derived Tool. A derived tool is defined as any solver that is based on and extends another SMT
solver (the base solver) from a different group of authors. Its system description must explicitly
acknowledge the solver it is based on and extends. It should further make clear technical innova-
tions by which the derived tool expects to improve on the original solver. A derived tool should
follow the naming convention [name of base solver]-[my solver name].

SMT Solver Submission. An entrant to SMT-COMP is a solver submitted by its authors using
the StarExec (http://www.starexec.org) service, or, for Parallel Track and Cloud Track, otherwise
communicated to the organisers.

Solver execution. The StarExec execution service enables members of the SMT research commu-
nity to run solvers on jobs consisting of benchmarks from the SMT-LIB benchmark library. Jobs
are run on a shared computer cluster. The execution service is provided free of charge, but requires
registration to create a login account. Registered users may then upload solvers to run, or may run
public solvers already uploaded to the service. Information about how to configure and upload a
solver is contained in the StarExec user guide, https://wiki.uiowa.edu/display/stardev/User+Guide.

Participation in the Competition. For participation in SMT-COMP, a solver must be uploaded
to StarExec and made publicly available, or communicated separately to the organisers for the
Cloud Track and Parallel Track. StarExec supports solver configurations. You can have at most
one configuration for each track (named after the track) and a default configuration used for tracks
without a track-specific configuration. Moreover, the organizers must be informed of the solver’s
presence and the tracks and divisions which it enters via the web form at

https://forms.gle/ewNQdFJbmQ12GxpX8

4

https://smtlib.cs.uiowa.edu/benchmarks.shtml
http://www.starexec.org
https://wiki.uiowa.edu/display/stardev/User+Guide
https://forms.gle/ewNQdFJbmQ12GxpX8

For each track the submission must specify the logics which are supported by the solver. The
solver will enter all divisions where it supports at least one logic. A submission must also include
a link to the system description (see below) and a 32-bit unsigned integer. These integer numbers,
collected from all submissions, are used to seed competition tools.

System description. As part of the submission, SMT-COMP entrants are required to provide
a short (1-2 pages, excluding references; plus 2 pages for proof format and proof checker if the
entrant is for the proof exhibition track) description of the system, which must explicitly acknowl-
edge any solver it wraps or is based on in case of a wrapper or derived tool (see above). In case
of a wrapper tool, it must also explicitly state the exact version of each wrapped solver. A sys-
tem description should further include the following information (unless there is a good reason
otherwise):

• a list of all authors of the system and their present institutional affiliations,

• the basic SMT solving approach employed,

• details of any non-standard algorithmic techniques as well as references to relevant literature
(by the authors or others),

• in case of a wrapper or derived tool: details of technical innovations by which a wrapper or
derived tool expects to improve on the wrapped solvers or base solver

• appropriate acknowledgment of tools other than SMT solvers called by the system (e.g., SAT
solvers) that are not written by the authors of the submitted solver, and

• a link to a website for the submitted tool.

• for participants of the Proof Exhibition Track a short description of their proof format of up
to two extra pages.

System descriptions must be submitted until the final solver deadline, and will be made publicly
available on the competition website. Organizers will check that they contain sufficient information
and may withdraw a system if its description is not sufficiently updated upon request

Multiple versions. The intent of the organizers is to promote as wide a comparison among solvers
and solver options as possible. However, to keep the number of solver submissions low, each
team should only provide multiple solvers if they are substantially different. A justification must
be provided for the difference. We strongly encourage the teams to keep the number of solvers
per team per category at at most two. By allowing up to two submissions we want to encourage
the development of new, experimental techniques via an “alternative solver” while keeping the
competition manageable.

Other solvers. The organizers reserve the right to include other solvers of interest (such as entrants
in previous SMT competitions) in the competition, e.g., for comparison purposes.

Deadlines
SMT-COMP entrants must be submitted via StarExec (solvers), or communicated separately to
the organisers for the Parallel Track and Cloud Track, and the above web form (accompanying
information) until the end of June 18, 2022 anywhere on earth. After this date no new entrants

5

will be accepted. However, updates to existing entrants on StarExec or Parallel Track and Cloud
Track will be accepted until the end of July 2, 2022 anywhere on earth.

We strongly encourage participants to use this grace period only for the purpose of fixing any
bugs that may be discovered, and not for adding new features, as there may be no opportunity to
do extensive testing using StarExec or other means after the initial deadline.

The solver versions that are present on StarExec or communicated otherwise to the organisers
for Parallel Track and Cloud Track at the conclusion of the grace period will be the ones used for
the competition. Versions submitted after this time will not be used. The organizers reserve the
right to start the competition itself at any time after the open of the New York Stock Exchange on
the day after the final solver deadline.

These deadlines and procedures apply equally to all tracks of the competition.

5 Execution of Solvers
Solvers will be publicly evaluated in all tracks and divisions into which they have been entered.
A solver enters a division in a track if it supports at least one logic in this division. A solver
not supporting all logics in a division will not be run on the benchmarks from the unsupported
logics and will be scored as if it returned the result unknown within zero time. All results of the
competition will be made public. Solvers will be made publicly available after the competition
and it is a minimum license requirement that (i) solvers can be distributed in this way, and (ii) all
submitted solvers may be freely used for academic evaluation purposes.

5.1 Logistics

Dates of Competition. The bulk of the computation will take place during the weeks leading
up to SMT 2022. Intermediate results will be regularly posted to the SMT-COMP website as
the competition runs. The organizers reserve the right to prioritize certain competition tracks or
divisions to ensure their timely completion, and in exceptional circumstances to complete divisions
after the SMT Workshop.

Competition Website. The competition website (www.smtcomp.org) will be used as the main
form of communication for the competition. The website will be used to post updates, link to these
rules and other relevant information (e.g. the benchmarks), and to announce the results. We also
use the website to archive previous competitions. Starting from 2019 we will include the submitted
solvers in this archive to allow reproduction of the competition results in the future.

Tools. The competition uses a number of tools/scripts to run the competition. In the following, we
briefly describe these tools. Unless stated otherwise, these tools are found at https://github.com/
SMT-COMP/smt-comp/tree/master/tools.

• Benchmark Selection. We use a script to implement the benchmark selection policy de-
scribed on page 15. It takes a seed for the random benchmark selection. The same seed is
used for all tools requiring randomisation.

6

www.smtcomp.org
https://github.com/SMT-COMP/smt-comp/tree/master/tools
https://github.com/SMT-COMP/smt-comp/tree/master/tools

• Scrambler. This tool is used to scramble benchmarks during the competition to ensure that
tools do not rely on syntactic features to identify benchmarks. The scrambler can be found
at https://github.com/SMT-COMP/scrambler.

• Trace Executor. This tool is used in the Incremental Track to emulate an on-line interaction
between an SMT solver and a client application and is available at https://github.com/SMT-
COMP/trace-executor

• Post-Processors. These are used by StarExec to translate the output of tools to the format
required for scoring. All post-processors (per track) are available at https://github.com/SMT-
COMP/postprocessors.

• Scoring. We use a script to implement the scoring computation described on in Section 7. It
also includes the scoring computations used in previous competitions (since 2015).

Input. In the Incremental Track, the trace executor will send commands from an (incremental)
benchmark file to the standard input channel of the solver. In all other tracks, a participating solver
must read a single benchmark file, whose filename is presented as the first command-line argument
of the solver.

Benchmark files are in the concrete syntax of the SMT-LIB format version 2.6, though with
a restricted set of commands. A benchmark file is a text file containing a sequence of SMT-LIB
commands that satisfies the following requirements:

• (set-option ...) The input contains the following set-option commands.

(a) In the Incremental Track, the :print-success option must not be disabled. The trace
executor will send an initial (set-option :print-success true) command to the solver.

(b) In all other tracks, the scrambler will add an initial (set-option :print-success false)
command to the solver.

(c) In the Model-Validation Track, a benchmark file contains a single (set-option :produce-
models true) command as the second command.

(d) In the Unsat-Core Track, a benchmark file contains a single (set-option :produce-
unsat-cores true) command as the second command.

(e) In the Proof Exhibition Track, a benchmark file contains a single (set-option :produce-
proofs true) command as the second command.

• (set-logic ...)
A (single) set-logic command is the first command after any set-option commands.

• (set-info ...)
A benchmark file may contain any number of set-info commands. During the competition
all set-info commands are removed from the benchmark by the scrambler.

• (declare-sort ...)
A benchmark file may contain any number of declare-sort and define-sort commands. All
sorts declared or defined with these commands must have zero arity.

7

https://github.com/SMT-COMP/scrambler
https://github.com/SMT-COMP/trace-executor
https://github.com/SMT-COMP/trace-executor
https://github.com/SMT-COMP/postprocessors
https://github.com/SMT-COMP/postprocessors

• (declare-fun ...) and (define-fun ...)
A benchmark file may contain any number of declare-fun and define-fun commands.

• (declare-datatype ...) and (declare-datatypes ...)
If the logic features algebraic datatypes, the benchmark file may contain any number of
declare-datatype(s) commands.

• (assert ...)
A benchmark file may contain any number of assert commands. All formulas in the file
belong in the declared logic, with any free symbols declared in the file.

• :named
(a) In all tracks except the Unsat-Core Track, named terms (i.e., terms with the :named

attribute) are not used.

(b) In the Unsat-Core Track, top-level assertions may be named.

• (check-sat)
(a) In all tracks except the Incremental Track, there is exactly one check-sat command.

(b) In the Incremental Track, there are one or more check-sat commands. There may also
be zero or more (push 1) commands, and zero or more (pop 1) commands, consistent
with the use of those commands in the SMT-LIB standard.

• (get-unsat-core)
In the Unsat-Core Track, the check-sat command (which is always issued in an unsatisfiable
context) is followed by a single get-unsat-core command.

• (get-model)
In the Model-Validation Track, the check-sat command (which is always issued in a satisfi-
able context) is followed by a single get-model command.

• (get-proof)
In the Proof Exhibition Track, the check-sat command (which is always issued in an unsat-
isfiable context) is followed by a single get-proof command.

• (exit)
It may optionally contain an exit command as its last command. In the Incremental Track,
this command must not be omitted.

• No other commands besides the ones just mentioned may be used.

The SMT-LIB format specification is available from the “Standard” section of the SMT-LIB web-
site [14]. Solvers will be given formulas only from the divisions into which they have been entered.

8

Output. In all tracks except the Incremental Track, any success outputs will be ignored2.
Solvers that exit before the time limit without reporting a result (e.g., due to exhausting mem-
ory or crashing) and do not produce output that includes sat, unsat, unknown or other track
specific output as specified in the individual track sections e.g. unsat cores or models, will be
considered to have aborted. Note that there is no distinction between output and error channel and
tools should not write any message to the error channel because it could be misinterpreted as a
wrong result.

Time and Memory Limits. Each SMT-COMP solver will be executed on a dedicated processor
of a competition machine, for each given benchmark, up to a fixed wall-clock time limit T . The
individual track descriptions on pages 9-11 specify the time limit for each track. Each processor
has 4 cores. Detailed machine specifications are available on the competition web site.

The StarExec service also limits the memory consumption of the solver processes. We expect
the memory limit per solver/benchmark pair to be on the order of 60 GB. The values of both the
time limit and the memory limit are available to a solver process through environment variables.
See the StarExec user guide for more information.

The limits for Parallel Track and Cloud Track are available at https://smt-comp.github.io/2022/
parallel-and-cloud-tracks.html.

Persistent State. Solvers may create and write to files and directories during the course of an
execution, but they must not read such files back during later executions. Each solver is executed
with a temporary directory as its current working directory. Any generated files should be pro-
duced there (and not, say, in the system’s /tmp directory). The StarExec system sets a limit on
the amount of disk storage permitted—typically 20 GB. See the StarExec user guide for more in-
formation. The temporary directory is deleted after the job is complete. Solvers must not attempt
to communicate with other machines, e.g., over the network.

5.2 Single Query Track (Previously: Main Track)
The Single Query Track track will consist of selected non-incremental benchmarks in each of the
competitive divisions. Each benchmark will be presented to the solver as its first command-line
argument. The solver is then expected to report on its standard output channel whether the formula
is satisfiable (sat) or unsatisfiable (unsat). A solver may also report unknown to indicate that
it cannot determine satisfiability of the formula.

Benchmark Selection. See page 15.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.

Post-Processor. This track will use https://github.com/SMT-COMP/postprocessors/tree/master/
single-query-track/process as a post-processor to validate and accumulate the results.

2SMT-LIB 2.6 requires solvers to produce a success answer after each set-logic, declare-sort, declare-fun and
assert command (among others), unless the option :print-success is set to false. Ignoring the success outputs
allows for submitting fully SMT-LIB 2.6 compliant solvers without the need for a wrapper script, while still allowing
entrants of previous competitions to run without changes.

9

https://smt-comp.github.io/2022/parallel-and-cloud-tracks.html
https://smt-comp.github.io/2022/parallel-and-cloud-tracks.html
https://github.com/SMT-COMP/postprocessors/tree/master/single-query-track/process
https://github.com/SMT-COMP/postprocessors/tree/master/single-query-track/process

5.3 Incremental Track (Previously: Application Track)
The incremental track evaluates SMT solvers when interacting with an external verification frame-
work, e.g., a model checker. This interaction, ideally, happens by means of an online communica-
tion between the framework and the solver: the framework repeatedly sends queries to the SMT
solver, which in turn answers either sat or unsat. In this interaction an SMT solver is required
to accept queries incrementally via its standard input channel.

In order to facilitate the evaluation of solvers in this track, we will set up a “simulation” of the
aforementioned interaction. Each benchmark represents a realistic communication trace, contain-
ing multiple check-sat commands (possibly with corresponding push 1 and pop 1 commands). It
is parsed by a (publicly available) trace executor, which serves the following purposes:

• simulating online interaction by sending single queries to the SMT solver (through stdin),

• preventing “look-ahead” behaviors of SMT solvers,

• recording time and answers for each command,

• guaranteeing a fair execution for all solvers by abstracting from any possible crash, misbe-
havior, etc. that might happen in the verification framework.

Input and output. Participating solvers should include a script smtcomp run incremental
(if this is not present the script for the default configuration will be used). This script will be
called without arguments and will be connected to a trace executor, which will incrementally send
commands to the standard input channel of the solver and read responses from both the standard
output channel of the solver. The commands will be taken from an SMT-LIB benchmark script that
satisfies the requirements for incremental track scripts given in Section 5.1. Solvers must respond
to each command sent by the trace executor with the answers defined in the SMT-LIB format
specification, that is, with an answer of sat, unsat, or unknown for check-sat commands, and
with a success answer for other commands. Solvers must not write anything to the standard
error channel.

Benchmark Selection. See page 15.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.

Trace Executor. This track will use the trace executor from https://github.com/SMT-COMP/trace-
executor to execute a solver on an incremental benchmark file.

Post-Processor. This track will use https://github.com/SMT-COMP/postprocessors/tree/master/
incremental-track/process as a post-processor to validate and accumulate the results.

5.4 Unsat-Core Track
The Unsat-Core Track will evaluate the capability of solvers to generate unsatisfiable cores. Per-
formance of solvers will be measured by correctness and size of the unsatisfiable core they provide.

10

https://github.com/SMT-COMP/trace-executor
https://github.com/SMT-COMP/trace-executor
https://github.com/SMT-COMP/postprocessors/tree/master/incremental-track/process
https://github.com/SMT-COMP/postprocessors/tree/master/incremental-track/process

Benchmark Selection. This track will run on a selection of non-incremental unsat benchmarks (as
described on page 15), modified to use named top-level assertions of the form (assert (! t :named
f)).

Input/Output. The SMT-LIB language provides a command (get-unsat-core), which asks a
solver to identify an unsatisfiable core after a check-sat command returns unsat. This unsat
core must consist of a list of all named top-level assertions in the format prescribed by the SMT-
LIB standard. Solvers must respond to each command in the benchmark script with the answers
defined in the SMT-LIB format specification. In particular, solvers that respond unknown to the
check-sat command must respond with an error to the following get-unsat-core command.

Result. The result of a solver is considered erroneous if (i) the response to the check-sat command
is sat, (ii) the returned unsatisfiable core is not, in fact, unsatisfiable. If the solver replies unsat
to check-sat but gives no response to get-unsat-core, this is considered as no reduction, i.e., as if
the solver would have returned the entire benchmark as an unsat core.

Validation. The organizers will use a selection of SMT solvers (the validation solvers) that par-
ticipate in the Single Query Track of this competition in order to validate if a given unsat core is
indeed unsatisfiable. For each division, the organizers will use only solvers that have been sound
(i.e., they did not produce any erroneous result) in the Single Query Track for this division. The
unsatisfiability of an unsat core is refuted if the number of validation solvers whose result is sat
exceeds the number of checking solvers whose result is unsat.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.
The time limit for checking unsatisfiable cores is yet to be determined, but is anticipated to be
around 5 minutes of wall-clock time per solver.

Post-Processor. This track will use https://github.com/SMT-COMP/postprocessors/tree/master/
unsat-core-track/process as a post-processor to validate and accumulate the results.

5.5 Model-Validation Track
The Model-Validation Track will evaluate the capability of solvers to produce models for satisfiable
problems. Performance of solvers will be measured by correctness and well-formedness of the
model they provide.

Benchmark Selection. This track has the divisions QF Bitvec, QF LinearIntArith, QF LinearReal-
Arith, QF Equality (only with QF UF benchmarks), QF Equality+LinearArith (only with QF UFIDL,
QF UFLIA, and QF UFLRA benchmarks), and QF Equality+Bitvec (only with QF UFBV bench-
marks). This year all divisions with UF logics (with uninterpreted functions) are experimental
divisions. The track will run on a selection of non-incremental sat benchmarks from these logics
(as described on page 15). We exclude from the selection all benchmarks containing arrays or
datatypes.

Input/Output. The SMT-LIB language provides a command (get-model) to request a satisfying
model after a check-sat command returns sat. This model must consist of definitions specifying
all and only the current user-declared function symbols, in the format prescribed by the SMT-LIB
standard.

11

https://github.com/SMT-COMP/postprocessors/tree/master/unsat-core-track/process
https://github.com/SMT-COMP/postprocessors/tree/master/unsat-core-track/process

Result. The result of a solver is considered erroneous if the response to the check-sat command
is unsat, if the returned model is not well-formed (e.g. does not provide a definition for all the
user-declared function symbols), or if the returned model does not satisfy the benchmark.

Validation. In order to check that the model satisfies the benchmark, the organizers will use
the model validating tool available at https://github.com/SMT-COMP/postprocessors/tree/master/
model-validation-track. It expects as model input a file with the answer to the check-sat command
followed by the solver response to the get-model command. The model validator tool will output

1. VALID for a sat solver response followed by a full satisfying model;

2. INVALID for

• an unsat solver response to check-sat or
• models that do not satisfy the input problem.

3. UNKNOWN for

• no solver output (no response to either both commands or get-model),
• an unknown response to check-sat, or
• malformed models, e.g., partial models.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.
The time limit for checking the satisfying assignment is yet to be determined, but is anticipated to
be around 15 minutes of wall-clock time.

Post-Processor. This track will use https://github.com/SMT-COMP/postprocessors/tree/master/
model-validation-track/process as a post-processor to validate and accumulate the results.

5.6 Parallel Track
The Parallel Track will evaluate the capability of solvers to determine the satisfiability of problems
in a shared-memory parallel computing environment. The track will be experimental.

Benchmark Selection. We will select non-incremental benchmarks from the smt-lib divisions
based on the participating solvers. In total 400 instances will be chosen such that their run times
are sufficiently high based on our estimation.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.

5.7 Cloud Track
The Cloud Track will evaluate the capability of solvers to determine the satisfiability of problems
in a distributed computing environment. The track will be experimental.

Benchmark Selection. We will select non-incremental benchmarks from the smt-lib divisions
based on the participating solvers. In total 400 instances will be chosen such that their run times
are sufficiently high based on our estimation.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.

12

https://github.com/SMT-COMP/postprocessors/tree/master/model-validation-track
https://github.com/SMT-COMP/postprocessors/tree/master/model-validation-track
https://github.com/SMT-COMP/postprocessors/tree/master/model-validation-track/process
https://github.com/SMT-COMP/postprocessors/tree/master/model-validation-track/process

5.8 Proof Exhibition Track
In the Proof Exhibition Track, teams can submit a proof-producing solver together with a proof
checker for its proof format. We will compile and present the results, as well as assemble a panel of
experts (not necessarily organizers) to do a qualitative assessment for each proof-producing solver,
proof format, and proof checker.

Benchmark Selection. This track will run on a selection of non-incremental unsat benchmarks
(as described on page 15).

Input/Output Solver. For the Proof Exhibition Track, solver authors should provide two scripts
with their solver. The first script, smtcomp solver, should take the name of the benchmark
file as a single argument and run the solver on the benchmark. As described in Section 5.1, the
benchmark will contain the commands (check-sat) and (get-proof). The solver must output the
answers to both of these commands to stdout. Output to stderr is ignored by the toolchain.

Solvers must respond to each command in the benchmark script with the answers defined in
the SMT-LIB format specification. If the solver outputs a proof, this proof must be an s-expression
according to the SMT-LIB standard, but otherwise the format is not specified. Solvers that respond
unknown to the check-sat command should respond with an error to the following get-proof
command. Note that the SMT-LIB conformant error result should be output to stdout.

Input/Output Checker. The second script, smtcomp checker, should take the benchmark file
name as first argument and the stdout output of the solver script as second argument. Note that this
output will usually start with the unsat result of the (check-sat) command, which the checker
must either parse or skip.

The checker should check the proof within the output and provide the result to stdout. Output
printed to stderr is ignored. The first line of the proof checker result should be either valid,
invalid, holey, sat, or unknown. The answer valid must only be given when the checker
certifies that the given proof justifies the unsatisfiability of the given benchmark. A checker that
returns valid to a satisfiable benchmark is deemed to be unsound. The answer invalid should
be returned if the proof is errorneous or otherwise malformed. If the proof checker determines that
the proof is valid but it contains holes, i.e., steps that are not checked for correctness, the answer
should be holey. The answer sat should be given if the solver claimed that the benchmark is
satisfiable, and unknown should be given if (1) the solver answered unknown, (2) it answered
unsat but did not give a proof, or (3) if the solver gave an error result.

After the first line, the proof checker can provide arbitrary key=value pairs. These will be
collected in the final result table and can include for example information about the number of
proof steps, the number of nodes in the proof, the number of holes, the number of different proof
rules, etc.

Result. The result of a solver is considered erroneous if (i) the proof checker returns sat (as the
benchmark is necessarily unsatisfiable), or (ii) the proof checker returns invalid to the given
proof. Since the Proof Exhibition Track is non-competitive and we are not fixing a definition of a
valid proof, there will be no score computed for this track.

A proof checker is unsound if it returns valid for an (invalid) proof of a satisfiable bench-
mark. Thus, a proof checker must also check that the formula that was proved corresponds to the

13

benchmark given. Soundness of the proof checker is a central criterion by which the participants
will be judged.

Time Limit. This track will use a wall-clock time limit of 20 minutes per solver/benchmark pair.
This time limit includes the time for proof checking.

Wrapper and Post-Processor. Solvers in this track will be wrapped in the competition to in-
clude the script https://github.com/SMT-COMP/postprocessors/tree/master/proof-track/starexec
run proof, which calls the solver and checker script. The track will use https://github.com/SMT-
COMP/postprocessors/tree/master/proof-track/process as a post-processor to validate and accumu-
late the results.

6 Benchmarks and Problem Divisions

Divisions. Within each track there are multiple divisions, and each division selects benchmarks
from a specific group of SMT-LIB logics in the SMT-LIB benchmark library.

Competitive Divisions. A division in a track is competitive if at least two substantially different
solvers (i.e., solvers from two different teams) were submitted. Although the organizers may enter
other solvers for comparison purposes, only solvers that are explicitly submitted by their authors
determine whether a division is competitive, and are eligible to be designated as winners. We will
not run non-competitive divisions.

Benchmark sources. Benchmarks for each division will be drawn from the SMT-LIB bench-
mark library. The Single Query Track, Parallel Track and Cloud Track will use a subset of all
non-incremental benchmarks and the Incremental Track will use a subset of all incremental bench-
marks. The Unsat-Core Track will use a selection of non-incremental unsat benchmarks and more
than one top-level assertion, modified to use named top-level assertions. The Model-Validation
Track will use a selection of non-incremental benchmarks with status sat from logics QF BV,
QF IDL, QF RDL, QF LIA, QF LRA, QF LIRA, QF UF, QF UFBV, QF UFIDL, QF UFLIA,
QF UFLRA. The Proof Exhibition Track will use a selection of non-incremental unsat bench-
marks. To determine whether a benchmark is sat or unsat, a combination of the benchmark’s status
and the result of the Single Query Track will be used.

New benchmarks. The deadline for submission of new benchmarks was March 15, 2021. The
organizers, in collaboration with the SMT-LIB maintainers, will be checking and curating these
until June 18, 2022.

The SMT-LIB maintainers intend to make a new release of the benchmark library publicly
available on or close to this date.

Benchmark demographics. The set of all SMT-LIB benchmarks in the logics of a given division
can be naturally partitioned to sets containing benchmarks that are similar from the user commu-
nity perspective. Such benchmarks could all come from the same application domain, be generated
by the same tool, or have some other obvious common identity. The organizers try to identify a
meaningful partitioning based on the directory hierarchy in SMT-LIB. In many cases the hierarchy
consists of the top-level directories each corresponding to a submitter, who has further imposed a

14

https://github.com/SMT-COMP/postprocessors/tree/master/proof-track/starexec_run_proof
https://github.com/SMT-COMP/postprocessors/tree/master/proof-track/starexec_run_proof
https://github.com/SMT-COMP/postprocessors/tree/master/proof-track/process
https://github.com/SMT-COMP/postprocessors/tree/master/proof-track/process

hierarchy on the benchmarks. The organizers believe that the submitters have the best informa-
tion on the common identity of their benchmarks and therefore partition each logic in a division
based on the bottom-level directory imposed by each submitter. These partitions are referred to as
families.

Benchmark selection. The competition will use a large subset of SMT-LIB benchmarks, with
some guarantees on including new benchmarks. In all tracks except the Parallel Track and Cloud
Track the following selection process will be used.

1. Remove inappropriate benchmarks. The organizers may remove benchmarks that are deemed
inappropriate or uninteresting for competition, or cut the size of certain benchmark families
to avoid their over-representation. SMT-COMP attempts to give preference to benchmarks
that are “real-world,” in the sense of coming from or having some intended application out-
side SMT.

2. Remove easy / uninteresting benchmarks. For the following tracks, all benchmarks that can
be considered as easy or uninteresting based on the following criteria will be removed.

• Single Query Track. All benchmarks that were solved by all solvers (including non-
competitive solvers) in less than one second in the corresponding track in 2018, 2019,
and 2020.

• Unsat-Core Track. All benchmarks with only a single assertion.

3. For the Proof Exhibition Track and Unsat-Core Track, all benchmarks with status sat are
removed. We further remove benchmarks with status unknown for which no sound solver
reported them to be unsat. For the Model-Validation Track, all benchmarks with status
unsat are removed, as well as benchmarks with status unknown for which no sound solver
reported them to be sat.

In case of a dispute (some solver marks a benchmark as sat and some other solver as
unsat), the benchmark may be retained in the selection.

4. Cap the number of instances in a division. The number of benchmarks in a division based
on the size of the corresponding logics in SMT-LIB will be limited as follows. Let n be the
number of benchmarks in an SMT-LIB logic, then

(a) if n ≤ 300, all instances will be selected;

(b) if 300 < n ≤ 600, a subset of 300 instances from the logic will be selected;

(c) and if n > 600, 50% of the benchmarks of the logic will be selected.

The selection process in cases 4b and 4c above will guarantee the inclusion of new benchmarks by
first picking randomly one benchmark from each new benchmark family. The rest of the bench-
marks will be chosen randomly from the remaining benchmarks using a uniform distribution. The
benchmark selection script will be publicly available at https://github.com/SMT-COMP/smt-comp/
tree/master/tools and will use the same random seed as the rest of the competition. The set of
benchmarks selected for the competition will be published when the competition begins.

15

https://github.com/SMT-COMP/smt-comp/tree/master/tools
https://github.com/SMT-COMP/smt-comp/tree/master/tools

Heats. Since the organizers at this point are unsure how long the set of benchmarks may take
(which will depend also on the number of solvers submitted), the competition may be run in heats.
For each track and division, the selected benchmarks may be randomly divided into a number of
(possibly unequal-sized) heats. Heats will be run in order. If the organizers determine that there
is adequate time, all heats will be used for the competition. Otherwise, incomplete heats will be
ignored.

Benchmark scrambling. Benchmarks will be slightly scrambled before the competition, using a
simple benchmark scrambler available at https://github.com/SMT-COMP/scrambler. The bench-
mark scrambler will be made publicly available before the competition. Naturally, solvers must
not rely on previously determined identifying syntactic characteristics of competition benchmarks
in testing satisfiability. Violation of this rule is considered cheating.

Pseudo-random numbers. Pseudo-random numbers used, e.g., for the creation of heats or the
scrambling of benchmarks, will be generated using the standard C library function random(),
seeded (using srandom()) with the sum, modulo 230, of the integer numbers provided in the
system descriptions (see Section 4) by all SMT-COMP entrants other than the organizers’. Addi-
tionally, the integer part of one hundred times the opening value of the New York Stock Exchange
Composite Index on the first day the exchange is open on or after the date specified in the timeline
(Section 2) will be added to the other seeding values. This helps provide transparency, by guaran-
teeing that the organizers cannot manipulate the seed in favor of or against any particular submitted
solver.

7 Scoring

7.1 Benchmark scoring
The parallel benchmark score of a solver is a quadruple 〈e, n, w, c〉, with

• e ∈ {0, 1} number of erroneous results (usually e = 0)
• 0 ≤ n ≤ N number of correct results (resp. reduction for the Unsat-Core Track)
• w ∈ [0, T] wall-clock time in seconds (real-valued)
• c ∈ [0,mT] CPU time in seconds (real-valued)

Error Score (e). For the Single Query Track, Incremental Track, Parallel Track, and Cloud Track e
is the number of returned statuses that disagree with the given expected status (as described above,
disagreements on benchmarks with unknown status lead to the benchmark being disregarded). For
the Unsat-Core Track, e includes, in addition, the number of returned unsat cores that are not, in
fact, unsatisfiable (as validated by a selection of other solvers selected by organizers). For the
Model-Validation Track, e includes, in addition, the number of returned models that are not full
satisfiable models.

Correctly Solved Score (n). For the Single Query Track, Incremental Track, Model-Validation
Track, Parallel Track, and Cloud Track, N is defined as the number of check-sat commands, and n
is defined as the number of correct results. For the Unsat-Core Track, N is defined as the number
of named top-level assertions, and n is defined as the reduction, i.e., the difference between N and
the size of the unsat core.

16

https://github.com/SMT-COMP/scrambler

Wall-Clock Time Score (w). The (real-valued) wall-clock time in seconds, until time limit T or
the solver process terminates.

CPU Time Score (c). The (real-valued) CPU time in seconds, measured across all m cores until
time limit mT is reached or the solver process terminates.

7.1.1 Sequential Benchmark Score

The parallel score as defined above favors parallel solvers, which may utilize all available processor
cores. To evaluate sequential performance, we derive a sequential score by imposing a virtual
CPU time limit equal to the wall-clock time limit T . A solver result is taken into consideration
for the sequential score only if the solver process terminates within this CPU time limit. More
specifically, for a given parallel performance 〈e, n, w, c〉, the corresponding sequential performance
is defined as 〈eS, nS, cS〉, where

• eS = 0 and nS = 0 if c > T , and eS = e and nS = n otherwise,

• cS = min {c, T}.3

7.1.2 Single Query Track, Parallel Track, and Cloud Track

For the Single Query Track, Parallel Track, and Cloud Track the error score e and the correctly
solved score n are defined as

• e = 0 and n = 0 if the solver

– aborts without a response, or
– the result of the check-sat command is unknown,

• e = 0 and n = 1 if the result of the check-sat command is sat or unsat and either

– agrees with the benchmark status,
– or the benchmark status is unknown,4

• e = 1 and n = 0 if the result of the check-sat command is incorrect.

Note that a (correct or incorrect) response is taken into consideration even when the solver process
terminates abnormally, or does not terminate within the time limit. Solvers should take care not to
accidentally produce output that contains sat or unsat.

3Under this measure, a solver should not benefit from using multiple processor cores. Conceptually, the sequential
performance should be (nearly) unchanged if the solver was run on a single-core processor, up to a time limit of T .

4If the benchmark status is unknown, we thus treat the solver’s answer as correct. Disagreements between different
solvers on benchmarks with unknown status are governed in Section 7.2.

17

7.1.3 Incremental Track

An application benchmark may contain multiple check-sat commands. Solvers may partially solve
the benchmark before timing out. The benchmark is run by the trace executor, measuring the total
time (summed over all individual commands) taken by the solver to respond to commands.5 Most
time will likely be spent in response to check-sat commands, but assert, push or pop commands
might also entail a reasonable amount of processing. For the Incremental Track, we have

• e = 1 and n = 0 if the solver returns an incorrect result for any check-sat command within
the time limit,

• otherwise, e = 0 and n is the number of correct results for check-sat commands returned by
the solver before the time limit is reached.

7.1.4 Unsat-Core Track

For the Unsat-Core Track, the error score e and the correctly solved score n are defined as

• e = 0 and n = 0 if the solver

– aborts without a response to check-sat, or
– the result of the check-sat command is unknown,
– the result of the get-unsat-core command is not wellformed.

• e = 1 and n = 0 if the result is erroneous according to Section 5.4,

• otherwise, e = 0 and n is the reduction in the number of formulas, i.e., n = N minus the
number of formula names in the reported unsatisfiable core.

7.1.5 Model-Validation Track

For the Model-Validation Track, the error score e and the correctly solved score n are defined as

• e = 0 and n = 0 if the result is UNKNOWN according to the output of the model validating
tool described in Section 5.5,

• e = 1 and n = 0 if the result is INVALID according to the output of the model validating
tool described in Section 5.5,

• otherwise, e = 0 and n = 1.
5Times measured by StarExec may include time spent in the trace executor. We expect that this time will likely be

insignificant compared to time spent in the solver, and nearly constant across solvers.

18

7.2 Division scoring
For each track and division, we compute a division score based on the parallel performance of a
solver (the parallel division score). For the Single Query Track, Unsat-Core Track and Model-
Validation Track we also compute a division score based on the sequential performance of a solver
(the sequential division score). Additionally, for the Single Query Track, we further determine
three additional scores based on parallel performance: The 24-second score will reward solving
performance within a time limit of 24 seconds (wall clock time), the sat score will reward (parallel)
performance on satisfiable instances, and the unsat score will reward (parallel) performance on
unsatisfiable instances. Finally, in divisions composed by more than one logic, all the above scores
will be presented not only for the overall division but also for each logic composing the division.

Sound Solver. A solver is sound on benchmarks with known status for a division if its parallel
performance (Section 7.1) is of the form 〈0, n, w, c〉 for each benchmark in the division, i.e., if it
did not produce any erroneous results.

Disagreeing Solvers. Two solvers disagree on a benchmark if one of them reported sat and the
other reported unsat.

Removal of Disagreements. Before division scores are computed for the Single Query Track,
benchmarks with unknown status are removed from the competition results if two (or more) solvers
that are sound on benchmarks with known status disagree on their result. Only the remaining
benchmarks are used in the following computation of division scores (but the organizers will report
disagreements for informational purposes).

7.2.1 Parallel Score

The parallel score for a division is computed for all tracks. It is defined for a participating solver
in a division with M benchmarks as the sum of all the individual parallel benchmark scores:∑

b∈M
〈eb, nb, wb, cb〉

.
A parallel division score 〈e, n, w, c〉 is better than a parallel division score 〈e′, n′, w′, c′〉 iff e < e′

or (e = e′ and n > n′) or (e = e′ and n = n′ and w < w′) or (e = e′ and n = n′ and w = w′ and
c < c′). That is, fewer errors takes precedence over more correct solutions, which takes precedence
over less wall-clock time taken, which takes precedence over less CPU time taken.

7.2.2 Sequential Score

The sequential score for a division is computed for all tracks except the Incremental Track, Parallel
Track, and Cloud Track. 6. It is defined for a participating solver in a division with M benchmarks
as the sum of all the individual sequential benchmark scores:∑

b∈M
〈esb, ns

b, w
s
b , c

s
b〉

6Since incremental track benchmarks may be partially solved, defining a useful sequential performance for the in-
cremental track would require information not provided by the parallel performance, e.g., detailed timing information
for each result. Due to the nature of Parallel Track and Cloud Track we will not consider the sequential scores

19

.
A sequential division score 〈es, ns, cs〉 is better than a sequential division score 〈es′ , ns′ , cs

′〉 iff
es < es

′ or (es = es
′ and ns > ns′) or (es = es

′ and nS = ns′ and cs < cs
′). That is, fewer errors

takes precedence over more correct solutions, which takes precedence over less CPU time taken.
We will not make any comparisons between parallel and sequential performances, as these are

intended to measure fundamentally different performance characteristics.

7.2.3 24-Seconds Score (Single Query Track)

The 24-seconds score for a division is computed for the Single Query Track as the parallel division
score with a wall-clock time limit T of 24 seconds.

7.2.4 Sat Score (Single Query Track)

The sat score for a division is computed for the Single Query Track as the parallel division score
when only satisfiable instances are considered.

7.2.5 Unsat Score (Single Query Track)

The unsat score for a division is computed for the Single Query Track as the parallel division score
when only unsatisfiable instances are considered.

7.3 Competition-Wide Recognitions
In 2014 the SMT competition introduced a competition-wide scoring to allow it to award medals
in the FLoC Olympic Games and has been awarded each year since. This scoring purposefully em-
phasized the breadth of solver participation by summing up a score for each (competitive) division
a solver competed in. Whilst this rationale is reasonable, we observed that this score had become
dictated by the number of divisions being entered by a solver.

This score has been replaced the competition-wide score with two rankings that select one
solver per division and then rank those solvers. The rationale here is to take the focus away from
the number of divisions entered and focus on measures that make sense to use to compare different
divisions.

7.3.1 Biggest Lead Ranking

This ranking aims to select the solver that won by the most in some competitive division. The
winners of each division are ranked by the distance between them and the next competitive solver
in that division.

Let nD
i be the correctness score of the ith solver (for a given scoring system e.g. number of

correct results or reduction) in division D. The correctness rank of division D is given as

nD
1 + 1

nD
2 + 1

20

Let cDi be the CPU time score of the ith solver in division D. The CPU time rank of division D is
given as

cD2 + 1

cD1 + 1

Let wD
i be the wall-clock time score of the ith solver in division D. The wall-clock time rank of

division D is given as
wD

2 + 1

wD
1 + 1

The biggest lead winner is the winner of the division with the highest (largest) correctness rank.
In case of a tie, the winner is determined as the solver with the higher corresponding CPU (resp.
wall-clock) time rank for sequential (resp. parallel) scoring. This can be computed per scoring
system.

7.3.2 Largest Contribution Ranking

This ranking aims to select the solver that uniquely contributed the most in some division, or to
put another way, the solver that would be most missed. This is achieved by computing a solver’s
contribution to the virtual best solver for a division.

Let 〈es, ns, ws, cs〉 be the parallel division score for solver s (for a given scoring system, i.e., n
is either number of correct results or reduction). If the division error score es > 0, then solver s is
considered unsound and excluded from the ranking. If the number of sound competitive solvers S
in a division D is |S| ≤ 2, the division is excluded from the ranking.

Let 〈esb, ns
b, w

s
b , c

s
b〉 be the parallel benchmark score for benchmark b and solver s (for a given

scoring system). The virtual best solver correctness score for a division D with competitive sound
solvers S is given as

vbssn(D,S) =
∑
b∈D

max{ns
b | s ∈ S and ns

b > 0}

where the maximum of an empty set is 0 (i.e., no contribution if a benchmark is unsolved).
The virtual best solver CPU time score vbssc and the virtual best solver wall-clock time score

vbssw for a division D with competitive sound solvers S is given as

vbssc(D,S) =
∑
b∈D

min{csb | s ∈ S and ns
b > 0}

vbssw(D,S) =
∑
b∈D

min{ws
b | s ∈ S and ns

b > 0}

where the minimum of an empty set is 1200 seconds (no solver was able to solve the benchmark).
In other words, for the single query track, vbssc(D,S) and vbssw(D,S) is the smallest amount

of CPU time and wall-clock time taken to solve all benchmarks solved in division D using all
sound competitive solvers in S.

Let S be the set of competitive solvers competing in division D. The correctness rank vbssn,
the CPU time rank vbssc and the wall-clock time rank vbssw of solver s ∈ S in division D are then
defined as

1− vbssn(D,S − s)

vbssn(D,S)
1− vbssc(D,S)

vbssc(D,S − s)
1− vbssw(D,S)

vbssw(D,S − s)

21

i.e., the difference in virtual best solver score when removing s from the computation.
These ranks will be numbers between 0 and 1 with 0 indicating that s made no impact on the

vbss and 1 indicating that s is the only solver that solved anything in the division. The ranks for a
division D in a given track will be normalized by multiplying with nD

N
, where nD corresponds to

the number of competitive solver/benchmark pairs in division D and N being the overall number
of competitive solver/benchmark pairs of this track.

The largest contribution winner is the solver across all divisions with the highest (largest)
normalized correctness rank. Again, this can be computed per scoring system. In case of a tie,
the winner is determined as the solver with the higher corresponding normalized CPU (resp. wall-
clock) time rank for sequential (resp. parallel) scoring.

7.4 Other Recognitions
The organizers will also recognize the following contributions:

• New entrants. All new entrants (to be interpreted by the organisers, but broadly a signifi-
cantly new tool that has not competed in the competition before) that beat an existing solver
in some division will be awarded special commendations.

• Benchmarks. Contributors of new benchmarks used in the competition will receive a special
mention.

These recognitions will be announced at the SMT workshop and published on the competition
website. The organizers reserve the right to recognize other outstanding contributions that become
apparent in the competition results.

8 Judging
The organizers reserve the right, with careful deliberation, to remove a benchmark from the com-
petition results if it is determined that the benchmark is faulty (e.g., syntactically invalid in a way
that affects some solvers but not others); and to clarify ambiguities in these rules that are discov-
ered in the course of the competition. Authors of solver entrants may appeal to the organizers
to request such decisions. Organizers that are affiliated with solver entrants will be recused from
these decisions. The organizers’ decisions are final.

9 Acknowledgments
SMT-COMP 2022 is organized under the direction of the SMT Steering Committee. The organiz-
ing team is

• Haniel Barbosa – Universidade Federal de Minas Gerais, Brazil (chair)

• François Bobot – CEA List, France

• Jochen Hoenicke – Universität Freiburg, Germany

22

http://homepages.dcc.ufmg.br/~hbarbosa/
https://github.com/bobot
https://jochen-hoenicke.de/

The competition chairs are responsible for policy and procedure decisions, such as these rules,
with input from the co-organizers.

Many others have contributed benchmarks, effort, and feedback. Clark Barrett, Pascal Fontaine,
Aina Niemetz and Mathias Preiner are maintaining the SMT-LIB benchmark library. The competi-
tion uses the StarExec service, which is hosted at the University of Iowa. Aaron Stump is providing
essential StarExec support.

Disclosure. Haniel Barbosa is part of the developing teams of the SMT solvers cvc5 [1] and
veriT [8]. François is part of the developing team of the SMT solver COLIBRI [7]. Jochen
Hoenicke is part of the developing team of the SMT solver SMTInterpol [9].

23

https://www.starexec.org/
http://www.cs.uiowa.edu/

References
[1] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai

Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex
Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.
cvc5: A versatile and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu, edi-
tors, Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part I, volume
13243 of Lecture Notes in Computer Science, pages 415–442. Springer, 2022.

[2] Clark Barrett, Leonardo de Moura, and Aaron Stump. Design and Results of the 1st Satisfia-
bility Modulo Theories Competition (SMT-COMP 2005). Journal of Automated Reasoning,
35(4):373–390, 2005.

[3] Clark Barrett, Leonardo de Moura, and Aaron Stump. Design and Results of the 2nd Annual
Satisfiability Modulo Theories Competition (SMT-COMP 2006). Formal Methods in System
Design, 31(3):221–239, 2007.

[4] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and Results of the
3rd Annual Satisfiability Modulo Theories Competition (SMT-COMP 2007). International
Journal on Artificial Intelligence Tools, 17(4):569–606, 2008.

[5] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and Results of
the 4th Annual Satisfiability Modulo Theories Competition (SMT-COMP 2008). Technical
Report TR2010-931, New York University, 2010.

[6] Daniel Le Berre and Laurent Simon. The Essentials of the SAT 2003 Competition. In Sixth
International Conference on Theory and Applications of Satisfiability Testing, volume 2919
of LNCS, pages 452–467. Springer, 2003.

[7] François Bobot, Zakaria Chihani, and Bruno Marre. Real behavior of floating point. In
Martin Brain and Liana Hadarean, editors, Proceedings of the 15th International Workshop
on Satisfiability Modulo Theories affiliated with the International Conference on Computer-
Aided Verification (CAV 2017), Heidelberg, Germany, July 22 - 23, 2017, volume 1889 of
CEUR Workshop Proceedings, pages 50–62. CEUR-WS.org, 2017.

[8] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT:
An Open, Trustable and Efficient SMT-Solver. In Renate A. Schmidt, editor, Proc. Confer-
ence on Automated Deduction (CADE), volume 5663 of Lecture Notes in Computer Science,
pages 151–156. Springer, 2009.

[9] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpolating SMT
solver. In Alastair Donaldson and David Parker, editors, Model Checking Software, pages
248–254, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[10] David R. Cok, David Déharbe, and Tjark Weber. The 2014 SMT Competition. Journal on
Satisfiability, Boolean Modeling and Computation, 9:207–242, 2014.

[11] David R. Cok, Alberto Griggio, Roberto Bruttomesso, and Morgan Deters. The
2012 SMT Competition. Available online at http://smtcomp.sourceforge.net/2012/reports/
SMTCOMP2012.pdf.

[12] David R. Cok, Aaron Stump, and Tjark Weber. The 2013 Evaluation of SMT-COMP and
SMT-LIB. Journal of Automated Reasoning, 55(1):61–90, 2015.

24

http://smtcomp.sourceforge.net/2012/reports/SMTCOMP2012.pdf
http://smtcomp.sourceforge.net/2012/reports/SMTCOMP2012.pdf

[13] F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI Communications,
15(2-3):79–90, 2002.

[14] Silvio Ranise and Cesare Tinelli. The SMT-LIB web site. http://www.smtlib.org.

25

http://www.smtlib.org

	Communication
	Important Dates
	Introduction
	Entrants
	Execution of Solvers
	Logistics
	Single Query Track (Previously: Main Track)
	Incremental Track (Previously: Application Track)
	Unsat-Core Track
	Model-Validation Track
	Parallel Track
	Cloud Track
	Proof Exhibition Track

	Benchmarks and Problem Divisions
	Scoring
	Benchmark scoring
	Sequential Benchmark Score
	Single Query Track, Parallel Track, and Cloud Track
	Incremental Track
	Unsat-Core Track
	Model-Validation Track

	Division scoring
	Parallel Score
	Sequential Score
	24-Seconds Score (Single Query Track)
	Sat Score (Single Query Track)
	Unsat Score (Single Query Track)

	Competition-Wide Recognitions
	Biggest Lead Ranking
	Largest Contribution Ranking

	Other Recognitions

	Judging
	Acknowledgments

