
CVC5-gg at the SMT Competition 2021
Clark Barrett1, Andres Nötzli1, Alex Ozdemir1, Andrew Reynolds2,

Cesare Tinelli2, Amalee Wilson1, and Haoze Wu1

1Stanford University
2The University of Iowa

Abstract—This paper is a description of the CVC5-gg SMT
solver as entered into the cloud and parallel tracks at the SMT
Competition 2021. CVC5-gg wraps the SMT solver CVC5 and
adds the infrastructure to run it in parallel and distributed
settings. It instruments CVC5 to split problems recursively into
independent subproblems using a theory-agnostic approach. It
then uses CVC5 to solve the subproblems and gg to distribute
the subproblems across different cores and machines. CVC5-gg
is currently work in progress and our submission is an early
prototype.

OVERVIEW

CVC5-gg consists of four main components: (a) an abstract
divide-and-conquer algorithm, (b) a base solver that attempts
to solve queries, (c) a splitter that divides queries into easier
ones, and (d) an infrastructure which schedules and executes
these tasks. CVC5-gg wraps CVC5 (commit bdc7c89) and
uses it for both the splitter and the base solver. CVC5 is the
successor of CVC4 [4] and more information about the tool
can be found on its website [2] and in the system description
for SMT-COMP 2021 [5]. The executor is gg [6].

DIVIDE-AND-CONQUER SMT SOLVING

Divide-and-conquer SMT solving recursively solves SMT
formulae by splitting the original formula into multiple inde-
pendent sub-problems. The algorithm attempts to solve the
original formula F using a base solver within some initial
timeout t0. If that timeout is exceeded, then the system invokes
a splitter which is given F and must split the formula into
d cubes C1, . . . Cd, which encode a partitioning of the search
space. More precisely, F and (F ∧C1)∨· · ·∨(F ∧Cd) must be
equisatisfiable and, as a consequence, if there exists a satisfiable
sub-problem F ∧ Ci, then F is satisfiable. Conversely, if F is
unsatisfiable, then all sub-problems F ∧ Ci are unsatisfiable.
After the splitter completes, the system adds sub-problems
F ∧ C1 through F ∧ Cd to its queue, to be recursively solved
with an increased timeout f · t, where t is the timeout of the
problem before this split and f is a timeout growth factor.
Through recursion, hard queries are split into ever finer sub-
problems attempted with exponentially increasing timeouts.

The system is configured by t0 (the initial timeout), f (the
timeout growth factor), d (the number of sub-problems per
split), and d0 (the number of splits to perform before the initial
solve attempt). In our implementation, we set t0 = 60 seconds,
f = 1.5, d = 4, and d0 = 16. We use the base solver, splitter,
and task executor described in the sections below.

SOLVING QUERIES

To solve the sub-problems, CVC5-gg invokes CVC5 with
increasing timeouts. Currently, CVC5-gg uses CVC5 in its
default configuration and does not retrieve any additional
information other than the satisfiability of a given sub-problem.

SPLITTING QUERIES

CVC5-gg includes an instrumented version of CVC5 that is
used to split a problem into d sub-problems by computing the
aforementioned cubes Ci. CVC5 is a CDCL(T )-based SMT
solver and the splitter instruments the core search to generate
sub-problems in a theory-agnostic way. CDCL(T )-based SMT
solvers use a SAT solver to produce satisfying assignments at
the propositional level. The theory solvers then find lemmas,
conflicts, and propagations based on the conjunction of theory
literals that is extracted from such an assignment. To split
a given problem, the splitter instruments CVC5 to intercept
calls to theory solvers. It collects the literals l1, . . . , lm that
correspond to the decisions that the current propositional
assignment is based on. If the number of literals m is greater
or equal to log2(d) where d is the desired number of sub-
problems, then the splitter outputs a new cube l1∧ . . .∧ ln (i.e.,
a conjunction of the first n literals) and asserts the lemma
¬(l1 ∧ . . . ∧ ln). The lemma forces CVC5’s procedure to
backtrack and skip to a different part of the search space.
Intuitively, the search space can be skipped because it will
later be investigated by solving the sub-problem. If the number
is smaller, then there is a risk that the splitter cannot produce
the requested number of sub-problems. To solve this issue,
the splitter does not output a cube in that case, but instead
lets CVC5 proceed with its invocation of the theory solvers. If
these solvers produce lemmas, the lemmas potentially result in
additional decisions, e.g., if they are splitting lemmas, and, as
a result, additional cubes. If the theory solvers find conflicts,
then the current part of the search space is uninteresting and no
sub-problem needs to be generated. After the splitter produces
n−1 sub-problems, it generates a sub-problem that corresponds
to the remaining search space by generating the final cube
¬C1 ∨ . . . ∨ ¬Cn−1 to ensure that the n sub-problems cover
the full search space.

Instrumenting CVC5 instead of implementing an independent
splitter has several advantages: CVC5-gg can reuse existing
infrastructure to represent and parse SMT problems, trivial
sub-problems and trivially entailed literals in cubes are skipped
by construction, and lemmas generated by theory solvers are



automatically used to generate theory-relevant cubes without
modifying the theory solvers themselves. The approach skips
trivial sub-problems when CVC5 detects conflicts on partial
assignments and cubes do not include literals that are trivially
entailed by the other literals in the cube because they would
be propagated during CVC5’s search and thus not count as a
decision.

SCHEDULING AND EXECUTING TASKS

CVC5-gg uses gg [6] to define and execute a divide-
and-conquer search. gg is a tool for dynamically defining
dependency graphs of tasks and executing them in parallel. gg
dependency graphs comprise values (simple files) and thunks
(tasks) which run a single executable or shell script on some
input files and produce some output files. The input files may
be values or outputs of other thunks. The outputs may be
values or thunks. In the latter case, these thunks are added to
the graph, allowing it to dynamically grow.

CVC5-gg describes its divide-and-conquer search algorithm
using the pygg library [3]: a Python interface to gg. Thus,
its solver is ultimately driven by a short python script which
describes the primitive tasks (splitting, solving, and merging
solutions) as thunks using pygg.

During dependency graph evaluation, the gg runtime uses a
configurable storage engine and a configurable list of execution
engines. An execution engine is responsible for evaluating
individual thunks; implemented engines include the local
machine, AWS Lambda, a remote machine running a gg
execution server, and Google Cloud Engines. The storage
service is responsible for storing values and thunks until they
are needed by an executor; implemented services are built
around AWS S3 and Redis.

For the SMT Competition 2021, CVC5-gg uses a gg runtime
configured as follows. Its storage service is a Redis datastore
running on the master node of the cluster. Its execution engines
are gg execution servers running on all nodes of the cluster.
The master node additionally runs the driver of the gg runtime
which manages the dependency graph and schedules tasks.

CONCLUSION

While CVC5-gg is only an early prototype of a divide-
and-conquer SMT solver, we believe the approach to be
promising. The divide-and-conquer architecture permits both
theory-agnostic splitters (which can be easily applied to new
theories) and theory-specific splitters (which can be optimized
to the dynamics of a specific theory, or even specific family
of benchmarks). Our work on CVC5-gg is ongoing.

ACKNOWLEDGMENTS

Like CVC5, CVC5-gg is supported in part by the organiza-
tions listed on CVC5’s website [1].

REFERENCES

[1] cvc5 acknowledgments. https://cvc5.github.io/
acknowledgements.html, 2020.

[2] CVC5 website. https://cvc5.github.io/, 2021.
[3] Py-gg. https://github.com/gg-project/gg/tree/next/tools/

pygg, 2021.
[4] Clark Barrett, Christopher L. Conway, Morgan Deters,

Liana Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds, and Cesare Tinelli. CVC4. In CAV, volume
6806 of Lecture Notes in Computer Science, pages 171–
177. Springer, 2011.

[5] Clark Barrett, Haniel Barbosa, Martin Brain, Gereon
Kremer, Makai Mann, Abdalrhman Mohamed, Mudathir
Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. cvc5 at the SMT Competition
2021. SMT-COMP 2021, 2021.

[6] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia, and
Keith Winstein. From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional con-
tainers. In 2019 USENIX Annual Technical Conference,
USENIX ATC 2019, pages 475–488, 2019. URL https:
//www.usenix.org/conference/atc19/presentation/fouladi.

https://cvc5.github.io/acknowledgements.html
https://cvc5.github.io/acknowledgements.html
https://cvc5.github.io/
https://github.com/gg-project/gg/tree/next/tools/pygg
https://github.com/gg-project/gg/tree/next/tools/pygg
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi

