
Yices-QS,
an extension of Yices for quantified satisfiability

Stéphane Graham-Lengrand

SRI International, USA

1 Introduction

Yices-QS is a solver derived from Yices 2, an open-source SMT solver developed
and distributed by SRI International. It was mostly developed between May and
August 2020, and is entering the SMT-competition for the first time in 2021, in
the BV and NRA divisions (single-track). It is available at
https://github.com/disteph/yicesQS.

Yices-QS extends Yices to supports quantifiers for complete theories, as
an application of features that have been recently added to Yices’ MCSAT
solver [dMJ13,Jov17], in particular: satisfiability modulo a model and model in-
terpolation. Until Aman Goel’s recent addition of E-graph matching and model-
based instantiation in Yices 2 for the UF theory, the support for quantifiers in
Yices was limited to the exists-forall fragment, using a variant of counterexample-
guided quantifier instantiation (CEGQI) [Dut15]. Yices-QS supports arbitrary
quantifiers, and its core algorithm extends Yices’ CEGQI approach into an algo-
rithm that can be seen as a form of lazy quantifier elimination, and that leverages
MCSAT’s new features, mentioned above and offered in Yices’s latest C API.

Yices-QS, which is entirely written in OCaml, is also the first development
built on top of our new OCaml bindings for Yices 2, available at
https://github.com/SRI-CSL/yices2_ocaml_bindings.

The version entering the 2021 SMT competition is commit 5b6f98a of Yices-
QS, using commit fed5994 of the OCaml bindings to call the Yices 2 library at
commit 09d18a4, available at
https://github.com/SRI-CSL/yices2.

2 Algorithm

Yices-QS does not modify the structure of quantifiers in formulas: it does not
prenexify formulas and, more importantly, it does not skolemize them to avoid
introducing uninterpreted function symbols.

In that, Yices-QS departs from the standard architecture for quantifier sup-
port consisting of keeping a set of universally quantified clauses, to be grounded
and sent to a core SMT-solver for ground clauses.

Instead, it sees a formula as a 2-player game, in the tradition of Bjørner &
Janota’s Playing with Quantified Satisfaction [BJ15] and earlier work on QBF.
Yices-QS’s algorithm is designed to answer queries of the following form:

https://github.com/disteph/yicesQS
https://github.com/SRI-CSL/yices2_ocaml_bindings
https://github.com/SRI-CSL/yices2


“Given a formula A(z, x) and a model Mz on z, produce either
– SAT(U(z)), with U(z) under-approx. of ∃x A(z, x) satisfied by Mz; or
– UNSAT(O(z)), with O(z) over-approx. of ∃x A(z, x) not satisfied by Mz;

where under-approximations and over-approximations are quantifier-free.”
To answer such queries, Yices-QS calls Yices’s new feature satisfiability mod-

ulo a model, while the production of under- and over-approximations leverages
model interpolation and model generalization.

When the input formula is in the exists-forall fragment, the algorithm degen-
erates to the one used in Yices’ ∃∀ solver, using quantifier-free solving and model
generalization, as described in [Dut15]. Model interpolation, a form of which is
used within MCSAT to solve quantifier-free problems, also becomes useful with
more quantifier alternations than ∃∀, and we believe this is a new contribution
to the quantified-problems-as-games approach, beyond the use of UNSAT cores.

3 Theory-specific aspects

– Model interpolation is available in Yices’s MCSAT solver for quantifier-free
problems. In particular, it has theory-specific techniques for, among other
theories, QF_NRA based on NLSAT [JdM12] (and ultimately, Cylindrical
Algebraic Decomposition–CAD), and QF_BV [GLJD20].

– Model generalization can be done generically by substitutions [Dut15], but
this can be complemented by theory-specific techniques that can provide bet-
ter generalizations. For QF_NRA, we use model-projection, recently added
to Yices’s MCSAT and based on, once again, CAD. For QF_BV, we use
invertibility conditions from Niemetz et al. [NPR+18], including ε-terms,
in combination with generalization-by-substitution. For the BV theory, the
cegqi solver from [NPR+18] is probably the closest to Yices-QS, which ap-
proaches BV as an instance of the theory-generic algorithm from Section 2.

Notes:
– For NRA, the presence of division in benchmarks departs from the theo-

retic applicability of Yices-QS’s algorithm for complete theories, because of
division-by-zero (which also makes the theory undecidable). Yices’s CAD-
based model-projection in NRA does not support division. In practice, when
Yices-QS needs to perform model generalization with a formula involving
division, it cannot use CAD model-projection and resorts to generalization-
by-substitution. This only works if the model values are rational rather than
algebraic irrational, for which we have no term representation. In that last
case, Yices-QS gives up. Resorting to generalization-by-substitution for NRA
also means that Yices-QS’s algorithm may not terminate.

– Since invertibility conditions for BV [NPR+18] capture existentially quan-
tified formulas with quantifier-free formulas, rather than provide over- or
under-approximations of them, we plan to explore how to use them for model
interpolation, while we currently only use them for model generalization.

– We also plan to explore other related works such as Monniaux’s Quantifier
Elimination by Lazy Model Enumeration [Mon10].

2



References

BJ15. N. Bjørner and M. Janota. Playing with quantified satisfaction. In
M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, Proc. of
the the 20th Int. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’15), volume 9450 of LNCS. Springer-Verlag, 2015.
https://doi.org/10.1007/978-3-662-48899-7 1

dMJ13. L. M. de Moura and D. Jovanovic. A model-constructing satisfiability cal-
culus. In R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, Proc. of the
14th Int. Conf. on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’13), volume 7737 of LNCS, pages 1–12. Springer-Verlag, 2013.
https://doi.org/10.1007/978-3-642-35873-9_1 1

Dut15. B. Dutertre. Solving exists/forall problems with yices. In 13th International
Workshop on Satisfiability Modulo Theories (SMT 2015), 2015. https://
yices.csl.sri.com/papers/smt2015.pdf. 1, 2

GLJD20. S. Graham-Lengrand, D. Jovanović, and B. Dutertre. Solving bitvectors with
MCSAT: explanations from bits and pieces. In N. Peltier and V. Sofronie-
Stokkermans, editors, Proceedings of the 10th International Joint Conference
on Automated Reasoning (IJCAR’20), volume 12166(1) of Lecture Notes in
Computer Science, pages 103–121. Springer-Verlag, 2020. 2

JdM12. D. Jovanović and L. de Moura. Solving non-linear arithmetic. In B. Gram-
lich, D. Miller, and U. Sattler, editors, Proc. of the 6th Int. Joint Conf. on
Automated Reasoning (IJCAR’12), volume 7364 of LNCS, pages 339–354.
Springer-Verlag, 2012. 2

Jov17. D. Jovanović. Solving nonlinear integer arithmetic with MCSAT.
In A. Bouajjani and D. Monniaux, editors, Proc. of the 18th Int.
Conf. on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’17), volume 10145 of LNCS, pages 330–346. Springer-Verlag, 2017.
https://doi.org/10.1007/978-3-319-52234-0_18 1

Mon10. D. Monniaux. Quantifier elimination by lazy model enumeration. In
T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification,
pages 585–599. Springer Berlin Heidelberg, 2010. 2

NPR+18. A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and C. Tinelli. Solving
quantified bit-vectors using invertibility conditions. In H. Chockler and
G. Weissenbacher, editors, Proc. of the 30th Int. Conf. on Computer Aided
Verification (CAV’18), volume 10982 of LNCS, pages 236–255. Springer-
Verlag, 2018. https://doi.org/10.1007/978-3-319-96142-2_16 2

3

https://doi.org/10.1007/978-3-662-48899-7
https://doi.org/10.1007/978-3-642-35873-9_1
https://yices.csl.sri.com/papers/smt2015.pdf
https://yices.csl.sri.com/papers/smt2015.pdf
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-96142-2_16

	Yices-QS, an extension of Yices for quantified satisfiability

