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1 Introduction

Yices-QS is a solver derived from Yices 2, an open-source SMT solver developed
and distributed by SRI International. It was mostly developed between May and
August 2020, and is entering the SMT-competition for the first time in 2021, in
the BV and NRA divisions (single-track). It is available at
https://github.com/disteph/yicesQS.

Yices-QS extends Yices to supports quantifiers for complete theories, as
an application of features that have been recently added to Yices’ MCSAT
solver [dMJ13,Jov17], in particular: satisfiability modulo a model and model in-
terpolation. Until Aman Goel’s recent addition of E-graph matching and model-
based instantiation in Yices 2 for the UF theory, the support for quantifiers in
Yices was limited to the exists-forall fragment, using a variant of counterexample-
guided quantifier instantiation (CEGQI) [Dut15]. Yices-QS supports arbitrary
quantifiers, and its core algorithm extends Yices’ CEGQI approach into an algo-
rithm that can be seen as a form of lazy quantifier elimination, and that leverages
MCSAT’s new features, mentioned above and offered in Yices’s latest C API.

Yices-QS, which is entirely written in OCaml, is also the first development
built on top of our new OCaml bindings for Yices 2, available at
https://github.com/SRI-CSL/yices2_ocaml_bindings.

The version entering the 2021 SMT competition is commit 5b6f98a of Yices-
QS, using commit fed5994 of the OCaml bindings to call the Yices 2 library at
commit 09d18a4, available at
https://github.com/SRI-CSL/yices2.

2 Algorithm

Yices-QS does not modify the structure of quantifiers in formulas: it does not
prenexify formulas and, more importantly, it does not skolemize them to avoid
introducing uninterpreted function symbols.

In that, Yices-QS departs from the standard architecture for quantifier sup-
port consisting of keeping a set of universally quantified clauses, to be grounded
and sent to a core SMT-solver for ground clauses.

Instead, it sees a formula as a 2-player game, in the tradition of Bjørner &
Janota’s Playing with Quantified Satisfaction [BJ15] and earlier work on QBF.
Yices-QS’s algorithm is designed to answer queries of the following form:

https://github.com/disteph/yicesQS
https://github.com/SRI-CSL/yices2_ocaml_bindings
https://github.com/SRI-CSL/yices2


“Given a formula A(z, x) and a model Mz on z, produce either
– SAT(U(z)), with U(z) under-approx. of ∃x A(z, x) satisfied by Mz; or
– UNSAT(O(z)), with O(z) over-approx. of ∃x A(z, x) not satisfied by Mz;

where under-approximations and over-approximations are quantifier-free.”
To answer such queries, Yices-QS calls Yices’s new feature satisfiability mod-

ulo a model, while the production of under- and over-approximations leverages
model interpolation and model generalization.

When the input formula is in the exists-forall fragment, the algorithm degen-
erates to the one used in Yices’ ∃∀ solver, using quantifier-free solving and model
generalization, as described in [Dut15]. Model interpolation, a form of which is
used within MCSAT to solve quantifier-free problems, also becomes useful with
more quantifier alternations than ∃∀, and we believe this is a new contribution
to the quantified-problems-as-games approach, beyond the use of UNSAT cores.

3 Theory-specific aspects

– Model interpolation is available in Yices’s MCSAT solver for quantifier-free
problems. In particular, it has theory-specific techniques for, among other
theories, QF_NRA based on NLSAT [JdM12] (and ultimately, Cylindrical
Algebraic Decomposition–CAD), and QF_BV [GLJD20].

– Model generalization can be done generically by substitutions [Dut15], but
this can be complemented by theory-specific techniques that can provide bet-
ter generalizations. For QF_NRA, we use model-projection, recently added
to Yices’s MCSAT and based on, once again, CAD. For QF_BV, we use
invertibility conditions from Niemetz et al. [NPR+18], including ε-terms,
in combination with generalization-by-substitution. For the BV theory, the
cegqi solver from [NPR+18] is probably the closest to Yices-QS, which ap-
proaches BV as an instance of the theory-generic algorithm from Section 2.

Notes:
– For NRA, the presence of division in benchmarks departs from the theo-

retic applicability of Yices-QS’s algorithm for complete theories, because of
division-by-zero (which also makes the theory undecidable). Yices’s CAD-
based model-projection in NRA does not support division. In practice, when
Yices-QS needs to perform model generalization with a formula involving
division, it cannot use CAD model-projection and resorts to generalization-
by-substitution. This only works if the model values are rational rather than
algebraic irrational, for which we have no term representation. In that last
case, Yices-QS gives up. Resorting to generalization-by-substitution for NRA
also means that Yices-QS’s algorithm may not terminate.

– Since invertibility conditions for BV [NPR+18] capture existentially quan-
tified formulas with quantifier-free formulas, rather than provide over- or
under-approximations of them, we plan to explore how to use them for model
interpolation, while we currently only use them for model generalization.

– We also plan to explore other related works such as Monniaux’s Quantifier
Elimination by Lazy Model Enumeration [Mon10].
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