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Changes in 4.6. Since version 4.5 there have been routine improvements and two main new
additions: a new set of inference rules for reasoning with arithmetic [13] and a new simplification
rule called subsumption demodulation [3]. Inspired by recent experiments with randomisation
[1] our portfolio mode also includes a ’fallback’ mode where it randomises previously attempted
strategies whilst time allows.

General Approach. Vampire [11] is an automatic theorem prover for first-order logic and
implements the calculi of ordered binary resolution and superposition for handling equality
as well as the Inst-gen calculus [7] and a MACE-style finite model builder [16]. Splitting in
resolution-based proof search is controlled by the AVATAR architecture [15, 21]. Both resolution
and instantiation based proof search make use of global subsumption [7]. It should be noted,
to avoid confusion, that unlike the standard SMT approach of instantiation, Vampire deals
directly with non-ground clauses via the first-order resolution and superposition calculi [18].

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space. The reduction ordering is the Knuth-Bendix Ordering. Internally, Vampire
works only with clausal normal form. Problems are clausified during preprocessing [17]. Vam-
pire implements many useful preprocessing transformations including the Sine axiom selection
algorithm [6]. Vampire is a parallel portfolio solver, executing a schedule of complementary
strategies in parallel.

Theory Reasoning. Vampire supports all logics apart from bit vectors, floating point, and
strings. This is thanks to recent support for a first-class boolean sort [9], arrays [8], and
datatypes [10], which are supported by special inference rules and/or preprocessing steps.However,
Vampire has no special support for ground problems (see Z3 point below) and is therefore not
entered into any quantifier-free divisions. The main techniques Vampire uses for theory reason-
ing are:

1. The addition of theory axioms. The main technique Vampire uses for non-ground theory
reasoning is to add axioms of the theory. This is clearly incomplete but can be effective
for a large number of problems. However, such axioms can be explosive in proof search.
Vampire uses two techniques to control the use of theory axioms. Firstly, the standard
set-of-support mechanism is employed to limit inferences between theory axioms [14].
Secondly, recent work [4] introduces the notion of layered clause queues that allow the
clause selection process central to the saturation algorithm to concentrate on inferences
that balance the use of theory axioms with input axioms.
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2. AVATAR modulo theories [12] which incorporates Z3 [2] (version 4.8.71) into AVATAR (in
this sense Vampire is a wrapper solver). In this setup the ground part of the problem is
passed to Z3 along with a propositional naming of the non-ground part (with no indication
of what this names) and the produced model is used to select a sub-problem for Vampire
to solve. The result is that Vampire only deals with problems that have theory-consistent
ground parts. In the extreme case where the initial problem is ground, Z3 will be passed
the whole problem. To reiterate, we never pass Z3 anything which is non-ground.

3. As described in [19, 18], Vampire combines new approaches to unification and instantiation
with the aim of leveraging an SMT solver (Z3) for reasoning within a clause. The first idea
is to lazily introduce constraints in cases where syntactic unification fails but unification
modulo a theory may be possible e.g. adding 2x 6= 10 when unifying p(2x) and ¬p(10).
These constraints can then be dealt with by the second idea, to utilise an SMT solver to
find instances of a clause where some theory constraints are satisfied e.g. p(7) is such an
instance of p(x) ∨ 14x 6= x2 + 49.

4. Recent work [13] introduces a set of new simplification rules designed inspired by lim-
itations in the previous approach. The first rule, called Gaussian Variable Elimination
eliminates variables that can be described completely in terms of other variables e.g.
replacing 7x 6= 6 ∨ p(y) by p(7x − 6). The other rules handle subterm generalisation,
evaluation, and cancellation.

5. For datatypes, we extend the superposition calculus with inference rules capturing dis-
tinctness, injectivity, and acyclicity of datatypes [10]. Recent work adds rules for struc-
tural induction [20, 5] that leverages AVATAR to explore multiple inductions concurrently.

Additionally, Vampire incorporates a MACE-style finite-model finding method that operates
on multi-sorted problems [16] (applicable to UF only). There are only two cases where Vampire
can return sat: Firstly in UF and secondly, if Vampire produces a ground problem after prepro-
cessing it may pass this problem to Z3 and report its result (possibly sat) directly. However,
this second case is not utilised in SMT-COMP.

Availability and Licensing. Please see https://vprover.github.io/ for instructions on
how to obtain Vampire and information about its licence. In the first instance, please direct
any queries to the first author.

Expected Performance. Generally, Vampire should perform best in quantifier-heavy prob-
lems; if a problem is mostly-ground there is less that Vampire can achieve compared to a
traditional SMT solver. We expect performance to be similar to last year.

Unsat Core Track. Vampire has entered the Unsat Core track for the first time this year.
Under normal operation, Vampire will always produce a proof of unsatisfiability. The unsat
core is defined as the subset of input clauses in the proof that were labelled in the input.

Parallel Track. In the parallel track Vampire will run using its parallel portfolio mode.

1To be precise, commit 5a1003f6ed10fc65a1cbcd2554f183714c413c7c, with thanks to Nikolaj Bjorner for
small changes to help with our integration.
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