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1 Overview

OpenSMT [7] is a T-DPLL based SMT solver [13] that has been developed at USI, Switzerland,
since 2008. The solver is written in C++ and currently supports the quantifier-free logics of
equality with uninterpreted functions (QF UF), linear real and integer arithmetic (QF LRA,
QF LIA), and real and integer difference logics (QF RDL, QF IDL). OpenSMT also supports
some aspects of bit-vector logic (QF BV).

In comparison to 2020, the 2021 competition entry features a dedicated difference logic solver
based on Exhaustive Theory Propagation [12], contributed by Václav Luňák, and support for
producing models for all fully supported logics (QF UF, QF LRA, QF LIA, QF RDL, QF IDL).
Additionally, the handling of ITE terms has been improved, resulting in a large performance
benefit on QF LIA benchmarks containing complex nested ITE terms.

OpenSMT features not exercised in the competition include support for a wide range of
interpolation algorithms for propositional logic [2], linear real arithmetic [5], and uninterpreted
functions [3] (available also in the incremental mode); an experimental lookahead-based search
algorithm [8] as an alternative to the more standard CDCL algorithm; and features that support
search-space partitioning in particular designed for parallel solving [9]. OpenSMT is now also
able to efficiently produce certificates of unsatisfiability [14], although this feature has not yet
been merged to the main repository.

2 Cloud Solver

The cloud version of OpenSMT, called SMTS, is designed to run in AWS infrastructure and
runs on our parallelization infrastructure described in [11]. We have entered two versions of the
solver to the experimental cloud track: SMTS portfolio which randomises the SAT solver by
choosing 2% of the decision variables randomly; and SMTS cube-and-conquer, which uses the
parallelization tree [9] approach to implement a version of search-space-partitioning.

3 External Code and Contributors

The SAT solver driving OpenSMT is based on the MiniSAT solver [6], and the rational number
implementation is inspired by a library written by David Monniaux. Several people have directly
contributed to the OpenSMT code. In alphabetical order, the major contributors are Leonardo
Alt (Ethereum Foundation), Sepideh Asadi (USI), Masoud Asadzade (USI), Martin Blicha
(USI, Charles University), Roberto Bruttomesso (Cybersecurity / Nozomi Networks), Antti
E. J. Hyvärinen (USI), Václav Luňák (Charles University), Matteo Marescotti (USI), Rodrigo
Benedito Otoni (USI), Edgar Pek (University of Illinois, Urbana-Champaign), Simone Fulvio
Rollini (United Technologies Research Center), Parvin Sadigova (King’s College London), and
Aliaksei Tsitovich (Sonova). The solver is being developed in Natasha Sharygina’s software
verification group at USI.
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4 Utilization

OpenSMT is used in a range of projects as a back-end solver. It has been used as an interpo-
lation engine of the Sally model checker [10] which won the first and the second place in the
transition systems category in the constrained Horn clause competition 2019 and 2020, respec-
tively. Recently, is has been used as the basis for a new CHC solver Golem which won the
second place in LRA-TS and LIA-Lin categories in CHC-COMP 2021. OpenSMT also forms
the basis of the model checkers HiFrog [1] and UpProver [4].

5 Availability

The source code repository and more information on the solver is available at

• https://github.com/usi-verification-and-security/opensmt and

• http://verify.inf.usi.ch/opensmt
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