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Abstract—In this document we introduce and describe our
Z3str4 string solver submitted to the SMTCOMP competition
2020. We briefly review the key insights that underpin the
algorithmic design of Z3str4, as well as its setup.

I. SYSTEM OVERVIEW

Z3str4 is a multi-armed solver that incorporates 3 sub-
solvers, namely, Z3str3, the length abstraction solver LAS,
and Z3seq (a string solver from the Z3 team at Microsoft
Research). Of these, the Z3str3 and the LAS solvers were
developed by the authors. Z3str3 is built on top of the
Z3 theorem prover, from Microsoft Research. The Z3str4
solver additionally makes use of other existing, unmodified
components of Z3 [1], namely, the core, bit-vector, and linear
arithmetic solvers.

The architecture of Z3str4 is illustrated in Fig. 1. Our solver
includes two pre-defined “arms”, or sequences of algorithms.
The algorithms in these arms are always executed in sequence
(as shown), with the possibility of clauses learnt from the
previous solver passed on as input to the subsequent one in
the sequence. Further, only one arm is ever executed in a run
of Z3str4. A arm is chosen using a heuristic we refer to as a
“probe”, that analyzes the input formula and predicts which
of the two arms would have a smaller runtime.

If an algorithm in an arm answers SAT or UNSAT, this
answer is returned by Z3str4. Otherwise, a timeout has been
reached for that algorithm and the next algorithm in the
sequence is called, first augmenting the input formula with
certain learned constraints from the previous algorithm in the
arm. This allows each algorithm to benefit from the work done
by earlier ones, even if they were unable to solve the problem.

As described above, each arm includes three possible al-
gorithms: a length abstraction solver (LAS), described in
the following section; Z3str3, which uses the well-known
“arrangement” method for solving strings [2], [3] and Z3seq,
with certain modifications as described below.

II. ARM SELECTION

The arm selection method or the “probe” uses static features
of the instance to determine which arm to invoke. At a
high level, the method checks whether any of the following
terms appear in the input formula: string disequalities; negated
prefixof and suffixof terms; and any contains,
replace, or regular expression terms. The intuition here is
that the occurrence of these terms generally produce formulas
that are hard for the bit-vector solver to handle due to
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Fig. 1. Architecture of the Z3str4 tool.

disjunctions of constraints. If these terms do not occur, an
arm is chosen in which algorithms that use the bit-vector
reduction (LAS and Z3str3) are called before algorithms that
don’t (Z3seq). Otherwise, the opposite priority is used.

III. LENGTH ABSTRACTION SOLVER (LAS)

The length abstraction solver (LAS) is a novel CEGAR-
style algorithm we developed for Z3str4 that can quickly
solve string formulas based on abstractions and refinements
of integer constraints implied by string equations. LAS ab-
stracts word equations and other input constraints into length
(in)equalities, and uses Z3’s built-in arithmetic solver to
solve them. Briefly, LAS first constructs an integer over-
approximation of the input formula based on implied length
constraints and checks if it is satisfiable. If it is unsatisfiable,
then it follows that the input is unsatisfiable as well. Otherwise,
the solver refines this over-approximation appropriately. This
process is repeated until the solver converges to the correct
satisfying assignment.

We note that, in the absence of string constraints to guide
the search, LAS exhibits two behaviours, depending on the
input formula: either it converges to the correct solution in a
small number of iterations, or does not converge at all. We
thus augmented LAS with a “dynamic difficulty estimation”
heuristic to allow the more powerful algorithms to take over
if it is determined at runtime that LAS is not performing well.



The heuristic measures the number of queries made to the bit-
vector solver and the time taken by each query, and instructs
LAS to give up if queries start taking too long to solve or if
too many queries are made. Note that in the non-conjunctive
arm, as LAS is the last algorithm used, this heuristic is not
applied.

IV. Z3 STRING SOLVER (Z3STR3)

Z3str3 is part of the Z3-str family of string solvers, including
Z3-str and Z3str2. Z3str3 reduces the input string constraints to
an arrangement (disjunction) of conjunctions of derived string
equations. (This algorithm is described in more detail in our
previous work [3].) Then, for each arrangement, the solver
queries the Z3 arithmetic solver to obtain consistent length
assignments to the string variables in them, and reduces the
resulting fixed-length equations to a bit-vector representation.
This formula is then solved by Z3’s bit-vector solver. If the
formula is satisfiable, the bit-vector solution can be translated
directly to a satisfying assignment for the original string
equation. Otherwise, the solver learns a clause that avoids the
current length assignment in a conflict-driven clause learning
loop, and continues searching for either a different length
assignment or a different arrangement.

The hybrid approach we use in Z3str3 combines the ef-
ficiency of an unfolding-based strategy (reduction of fixed-
length word equations to bit-vectors) with the ability of a
word-based strategy to reason about string terms of unbounded
length (the arrangement method).

V. Z3 SEQUENCE SOLVER (Z3SEQ)

The Z3 sequence solver (Z3seq) is a system implemented
by Nikolaj Bjørner and others at Microsoft Research as part of
the Z3 SMT solver. Z3seq is a procedure for solving general
constraints over “sequences”, including the ability to reason
about string constraints. We have used the sequence solver “as-
is”, except for the addition of a “dynamic difficulty estimation”
heuristic similar in principle to the one we implemented for
LAS. The sequence solver has over 20 rules that it follows
when determining the satisfiability of an input. We have
observed empirically that queries which are solved efficiently
by the sequence solver rarely cause later rules to fail. Our
dynamic difficulty estimation (DDE) heuristic keeps track of
the index of the last rule which failed, and instructs the solver
to give up if that index is above a certain threshold and certain
timeout has been reached. We fix this index internally to
correspond to the index of the second-last rule to be checked.
The rule in question is called branch_nqs, which fails if
there are any disequalities in the formula that need to be
branched on. We have found through experimental evaluation
that giving up on this check if it fails, and passing the formula
to the next algorithm in the current arm, increases performance
significantly. Note that this heuristic is not enabled when the
sequence solver is the very last algorithm to be used, because
there is no “next” algorithm to fall back onto.
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