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Description

SMTInterpol is an SMT solver written in Java and available under LGPL v3. It supports the
combination of the theories of uninterpreted functions, linear arithmetic over integers and reals,
and arrays. Furthermore it can produce models, proofs, unsatisfiable cores, and interpolants.
The solver reads input in SMT-LIB format. It includes parsers for DIMACS, AIGER, and
SMT-LIB version 1.2 and 2.5.

The solver is based on the well-known DPLL(T)/CDCL framework [GHN+04]. It uses
variants of standard algorithms for CNF conversion [PG86] and congruence closure [NO05].
The solver for linear arithmetic is based on Simplex [DdM06], the sum-of-infeasibility algo-
rithm [KBD13], and branch-and-cut for integer arithmetic [CH15a, DDA09]. The array decision
procedure is based on weak equivalences [CH15b] and includes an extension for constant ar-
rays [HS19]. Theory combination is performed based on partial models produced by the theory
solvers [dMB08].

In the current release, the solver for quantified formulas was extensively revised. The core
of the new approach is an incremental search for instances of quantified clauses that result
in a conflict or a propagation. Instead of using E-matching as an instantiation heuristic, the
E-graph is used to detect and evaluate candidate instances before adding them to the ground
problem. The solver decides the finite almost uninterpreted fragment [GdM09].

The main focus of SMTInterpol is the incremental track. This track simulates the typical
application of SMTInterpol where a user asks multiple queries. As an extension SMTInter-
pol supports quantifier-free interpolation for the supported theories [CH16, HS18, HS19]. This
makes it useful as a backend for software verification tools. In particular, Ultimate Au-
tomizer1 and CPAchecker2, the winners of the SV-COMP 2016–2020, use SMTInterpol.

Competition Version

The version submitted to the SMT-COMP 2020 includes a revised solver for quantified formulas.
Proof production for quantified formulas is only partially implemented, and while this version
supports unsat core extraction, it does not support interpolation in the presence of quantified
formulas. The solver is conservative and returns unknown for satisfiable formulas that are not
in the supported fragment.

1https://ultimate.informatik.uni-freiburg.de/
2https://cpachecker.sosy-lab.org/
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Webpage and Sources

Further information about SMTInterpol can be found at

http://ultimate.informatik.uni-freiburg.de/smtinterpol/

The sources are available via GitHub

https://github.com/ultimate-pa/smtinterpol

Authors

The code was written by Jürgen Christ, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz,
Markus Pomrehn, Pascal Raiola, and Tanja Schindler.

Logics, Tracks and Magic Number

SMTInterpol participates in the single query track, the incremental track, the unsat core track,
and the model validation track. It supports all combinations of uninterpreted functions, linear
arithmetic, and arrays, and participates in the following logic divisions:

ALIA, AUFLIA, AUFLIRA, LIA, LRA, QF ALIA, QF AUFLIA, QF AX, QF IDL, QF LIA,
QF LIRA, QF LRA, QF RDL, QF UF, QF UFIDL, QF UFLIA, QF UFLRA, UF, UFIDL,
UFLIA, UFLRA.

Magic Number: 192 843 011
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