
MinkeyRink Solver at SMTCOMP 2020

Trevor Hansen

Melbourne, Australia

MinkeyRink Solver (MinkeyRink) is an eager bit-blasting (QF BV) solver with a focus
on applying simplifications that preserve and enhance sharing at the word-level (over QF BV

expressions). Sharing-aware transformations have long been applied in similar contexts,
such as and-inverter graphs (AIGs) [1].

At word-level node-creation time: unsigned interval, signed interval, pointwise, constant-
bit[3], and wrapped-interval[2] analysis is performed to identify expression that can be
rewritten to simpler equivalent terms (e.g. constants), or to less expensive operations. The
analyses compliment each other. For example:

• that ite(a, 2, 5) cannot equal 3, is determined by pointwise analysis, but not via the
other analyses.

• If interval analysis determines that an expression must be positive, then any arithmetic
right shifts of that expression can be replaced by logical right shifts.

• If constant-bit analysis detemines that the bvand of two operands to an addition is
zero, then the addition can be replaced by an bit-vector “or“.

MinkeyRink: encodes into CNF via the and-inverter graph sub-package of ABC[4],
for SAT solving uses CaDiCal, handles arbitrary-precision bit-vectors using Steffen Beyers
library, and uses some components from the STP solver.

References

[1] Robert Brummayer and Armin Biere. Local two-level and-inverter graph minimization
without blowup. In Proceedings of the 2nd Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science (MEMICS06), 2006.

[2] Graeme Gange, Jorge Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey.
Interval analysis and machine arithmetic: Why signedness ignorance is bliss. ACM
Transactions on Programming Languages and Systems, 37(1):1:1–1:35, january 2015.

[3] Trevor Hansen. A Constraint Solver and its Application to Machine-Code Test Gener-
ation. PhD thesis, University of Melbourne, 2012.

[4] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. DAG-aware AIG rewriting:
A fresh look at combinational logic synthesis. In Proceedings of the 43rd Annual Design
Automation Conference, DAC ’06, pages 532–535, New York, NY, USA, 2006. ACM.

1


