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MinkeyRink Solver (MinkeyRink) is an eager bit-blasting (QF BV) solver with a focus
on applying simplifications that preserve and enhance sharing at the word-level (over QF BV

expressions). Sharing-aware transformations have long been applied in similar contexts,
such as and-inverter graphs (AIGs) [1].

At word-level node-creation time: unsigned interval, signed interval, pointwise, constant-
bit[3], and wrapped-interval[2] analysis is performed to identify expression that can be
rewritten to simpler equivalent terms (e.g. constants), or to less expensive operations. The
analyses compliment each other. For example:

• that ite(a, 2, 5) cannot equal 3, is determined by pointwise analysis, but not via the
other analyses.

• If interval analysis determines that an expression must be positive, then any arithmetic
right shifts of that expression can be replaced by logical right shifts.

• If constant-bit analysis detemines that the bvand of two operands to an addition is
zero, then the addition can be replaced by an bit-vector “or“.

MinkeyRink: encodes into CNF via the and-inverter graph sub-package of ABC[4],
for SAT solving uses CaDiCal, handles arbitrary-precision bit-vectors using Steffen Beyers
library, and uses some components from the STP solver.
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