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Abstract—In this paper, we present Bitwuzla, our Satisfiability
Modulo Theories (SMT) solver for the theories of bit-vectors,
floating-points, arrays and uninterpreted functions and their
combinations. We discuss selected features and provide details
of its configuration and participation in the 2020 edition of the
annual SMT competition.

I. INTRODUCTION

Bitwuzla is a Satisfiability Modulo Theories (SMT) solver
for the theories of bit-vectors, floating-points, arrays and unin-
terpreted functions and their combinations. Its name is derived
from an Austrian dialect expression that can be translated as
“someone who tinkers with bits”. Bitwuzla is the successor
of our SMT solver Boolector [20], which supports bit-vectors,
arrays and uninterpreted functions.

Bitwuzla implements a lemmas on demand procedure for
logics with arrays and uninterpreted functions that generalizes
the lemmas on demand for arrays approach from [11] to non-
recursive first-order lambda terms [21, 22]. For quantifier-free
bit-vectors, it supports the classic bit-blasting approach [14],
different approaches to local search [15, 17, 18, 19], and
a sequential combination of both. For floating-point logics,
Bitwuzla includes SymFPU [9], a C++ library of bit-vector
encodings of floating-point operations. It further supports unsat
core extraction for all supported quantifier-free logics.

This paper serves as system description for Bitwuzla as
entered into the SMT competition 2020 [3]. The source code
of Bitwuzla will be made available on GitHub under the MIT
license, and releases and more information will be available
on its website [1].

II. FEATURES

A. Arrays and Uninterpreted Functions

Bitwuzla generalizes the lemmas on demand for exten-
sional arrays approach [11] to non-recursive first-order lambda
terms [21, 22], which enables compact representations for op-
erations such as memset and memcpy [23] and constant arrays.
It further supports dual propagation-based and justification-
based optimization techniques for lemmas on demand, where
the overhead for consistency checking is reduced by extracting
partial candidate models via don’t care reasoning on full
candidate models [16].

B. Quantifier-Free Bit-Vectors

Bitwuzla implements two orthogonal strategies for solving
quantifier-free bit-vector constraints: the classic bit-blasting
approach employed by most state-of-the-art bit-vector solvers,

and local search. Since local search procedures are only able
to determine satisfiability, Bitwuzla allows to combine local
search with bit-blasting in a sequential portfolio setting, where
the local search procedure is run until a certain limit is reached,
before falling back to the bit-blasting engine.

Local Search for Quantifier-Free Bit-Vectors. Bitwuzla sup-
ports the stochastic local search (SLS) approach presented
in [13], an improved variant where SLS is augmented with
a propagation-based strategy [19], and mainly the complete
propagation-based local search procedure presented in [18].
The latter can both be applied on the bit-level and word-level.
The word-level strategy, however is superior to the bit-level
implementation, which operates on the circuit representation
of the input formula. Bitwuzla further implements a novel
generalization of the propagation-based approach in [18] to
ternary values. This generalization addresses the main weak-
ness of the propagation-based local search strategy [15, 18], its
obliviousness to bits that can be simplified to constant values.
The local search engines can now also be combined with the
lemmas on demand engine and quantified bit-vectors.

Bit-Blasting. Bitwuzla implements bit-blasting in two phases.
Initially, it generates an And-Inverter Graph (AIG) circuit
representation of the simplified input formula and then applies
AIG-level rewriting [10]. The rewritten AIG representation is
then converted into Conjunctive Normal Form (CNF) and sent
to one of following SAT back ends: MiniSat [12], PicoSAT [6],
Lingeling [7], CaDiCaL [8], CryptoMiniSat [25], or Kissat [2].

Bitwuzla uses CaDiCaL version 1.2.1 as default SAT back
end. It further utilizes Lingeling for preprocessing the Boolean
skeleton of the input formula.

C. Quantified Bit-Vectors

Bitwuzla implements a combination of counterexample
guided quantifier instantiation and syntax-guided synthesis
(SyGuS) [4] to synthesize Skolem functions [24] for exis-
tential variables. By default, Bitwuzla also employs a dual
approach, which applies the same technique to the negation
of the input formula to synthesize quantifier instantiations.
Both approaches are run in two separate threads in parallel.
Combination with other theories, incremental solving and
unsat core extraction is currently not supported for quantified
bit-vectors.



D. Floating-Points

For the theory of floating-points, Bitwuzla implements an
eager translation of the simplified input formula to the theory
of bit-vectors. This approach is sometimes also referred to as
word-blasting. To translate floating-point expressions to the
word-level, Bitwuzla integrates SymFPU [9], a C++ library
of bit-vector encodings of floating-point operations. SymFPU
uses templated types for Booleans, (un)signed bit-vectors,
rounding modes and floating-point formats, which allows to
plug it in as a back end while utilizing solver-specific repre-
sentations. It is also integrated in the SMT solver CVC4 [5].

E. Unsat Cores

Bitwuzla implements unsat core extraction via solving under
assumptions [12]. When unsat core extraction is enabled, all
assertions in the formula are assumed in the SAT back end.
If given input formula is unsatisfiable, Bitwuzla returns all
unsatisfiable (failed) assumptions as unsat core. Unsat Core
extraction is not yet supported for quantified formulas.

III. CONFIGURATIONS

Bitwuzla participates in the single query, incremental, unsat
core, and model validation tracks in the following divisions:

• Single Query Track (SQ):
BV, QF BV, QF ABV, QF AUFBV, QF UFBV,
QF FP, QF BVFP, QF ABVFP, QF UFFP

• Incremental Track (INC):
QF BV, QF ABV, QF AUFBV, QF UFBV, QF FP,
QF BVFP, QF ABVFP, QF UFFP

• Unsat Core Track (UC):
QF BV, QF ABV, QF AUFBV, QF UFBV, QF FP,
QF BVFP, QF ABVFP, QF UFFP

• Model Validation Track (MV):
QF BV

For divisions BV and QF BV in the SQ and MV track,
Bitwuzla uses a sequential combination of bit-blasting and
propagation-based local search with a limit of 10k propagation
steps and 2M model update steps.

IV. LICENSE

Bitwuzla will be available on GitHub and licensed under
the MIT license. For more details, refer to the actual license
text, which is distributed with the source code.
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