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OVERVIEW

MathSAT5 [1] is a lazy SMT solver [2] based on the
DPLL(T) architecture [3], and it uses MiniSAT [4] as
the underlying SAT solver. It supports most of the SMT-
LIB [5] theories and provides many SMT functionalities
(e.g. unsatisfiable cores [6], interpolation, ALLSMT). It does
not offer support for quantifiers.

In the last couple of years, the support for nonlinear
arithmetic and transcendental functions has been added to
MathSAT, based on incremental linearization. The main idea
of incremental linearization is that of trading the use of
expensive, exact solvers for nonlinear arithmetic for much
less expensive solvers for linear arithmetic and uninter-
preted functions. The approach is based on an abstraction-
refinement loop that uses SMT(UFLA) as abstract domain.
The uninterpreted functions are used to model nonlinear
multiplications, which are incrementally axiomatized, by
means of linear constraints, with a lemma-on-demand [7]
approach.

Details about incremental linearization can be found
in [8], [9], [10], [11], [12] and theory solvers can be found
in [13], [14], [15], [16], [17].

PARTICIPATION AND CONFIGURATIONS

MathSAT5 will participate in the single query, incremental
and unsat core tracks, entering the following (nonlinear)
categories:

Single Query track: QF ANIA, QF AUFNIA, QF NIA,
QF NIRA, QF NRA, QF UFNIA, QF UFNRA.

Incremental track: QF ANIA, QF AUFBVNIA,
QF NIA, QF UFNIA.

Unsat Core track: QF ANIA, QF AUFNIA, QF NIA,
QF NIRA, QF NRA, QF UFNIA, QF UFNRA.

Two versions of MathSAT5 have been submitted:
MathSAT-default and MathSAT-na-ext.

MathSAT-default:

This is the public release version 5.5.4 with some fixes.
Essentially, it employs the strategy for nonlinear as described
in [11].

MathSAT-na-ext:

This is an extension of MathSAT-default. It differs from
MathSAT-default in the following ways:

• use of lazier strategy for the instantiation of lineariza-
tion lemmas;

• try to minimize the boolean assignment that are given
to theory solvers;

• use of backward implication in addition to forward
implication of the tangent lemma:
– v1 ∗ v2 < b ∗ v1 + a ∗ v2 − a ∗ b→

((v1 > a ∧ v2 < b) ∨ (v1 < a ∧ v2 > b))
– v1 ∗ v2 > b ∗ v1 + a ∗ v2 − a ∗ b→

((v1 < a ∧ v2 < b) ∨ (v1 > a ∧ v2 > b))

where v1, v2 are variables and a, b are rational/integer
constants;

• mark linearization lemmas as temporary learnt clauses
and therefore these lemmas can be dropped by the
learnt clause DB cleaning heuristics.
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