MathSAT5 (Nonlinear) at the SMT Competition 2019

Ahmed Irfan
Stanford University, United States
Email: irfan@cs.stanford.edu

Alberto Griggio, Alessandro Cimatti
Fondazione Bruno Kessler, Italy
Email: {griggio, cimatti}@fbk.eu

Roberto Sebastiani
University of Trento, Italy
Email: roberto.sebastiani@unitn.it

OVERVIEW

MathSAT5 [1] is a lazy SMT solver [2] based on the DPLL(T) architecture [3], and it uses MiniSAT [4] as the underlying SAT solver. It supports most of the SMT-LIB [5] theories and provides many SMT functionalities (e.g. unsatisfiable cores [6], interpolation, ALLSMT). It does not offer support for quantifiers.

In the last couple of years, the support for nonlinear arithmetic and transcendental functions has been added to MathSAT, based on incremental linearization. The main idea of incremental linearization is that of trading the use of expensive, exact solvers for nonlinear arithmetic for much less expensive solvers for linear arithmetic and uninterpreted functions. The approach is based on an abstraction-refinement loop that uses SMT(UFLA) as abstract domain. The uninterpreted functions are used to model nonlinear multiplications, which are incrementally axiomatized, by means of linear constraints, with a lemma-on-demand [7] approach.

Details about incremental linearization can be found in [8], [9], [10], [11], [12] and theory solvers can be found in [13], [14], [15], [16], [17].

PARTICIPATION AND CONFIGURATIONS

MathSAT5 will participate in the single query, incremental and unsat core tracks, entering the following (nonlinear) categories:

Single Query track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NIRA, QF_NRA, QF_UFNIA, QF_UFNRA.

Incremental track: QF_ANIA, QF_AUFBVNIA, QF_NIA, QF_UFNIA.

Unsat Core track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NIRA, QF_NRA, QF_UFNIA, QF_UFNRA.

Two versions of MathSAT5 have been submitted: MathSAT-default and MathSAT-na-ext.

MathSAT-default:

This is the public release version 5.5.4 with some fixes. Essentially, it employs the strategy for nonlinear as described in [11].

MathSAT-na-ext:

This is an extension of MathSAT-default. It differs from MathSAT-default in the following ways:

- use of lazier strategy for the instantiation of linearization lemmas;
- try to minimize the boolean assignment that are given to theory solvers;
- use of backward implication in addition to forward implication of the tangent lemma:
 - $v_1 \cdot v_2 < b \cdot v_1 + a \cdot v_2 - a \cdot b \rightarrow ((v_1 > a \land v_2 < b) \lor (v_1 < a \land v_2 > b))$
 - $v_1 \cdot v_2 > b \cdot v_1 + a \cdot v_2 - a \cdot b \rightarrow ((v_1 < a \lor v_2 < b) \lor (v_1 > a \land v_2 > b))$

where v_1, v_2 are variables and a, b are rational/integer constants;
- mark linearization lemmas as temporary learnt clauses and therefore these lemmas can be dropped by the learnt clause DB cleaning heuristics.

MAGIC NUMBER: 512

REFERENCES

