
CVC4 at the SMT Competition 2019
Clark Barrett1, Haniel Barbosa2, Martin Brain3, Tim King4, Makai Mann1, Aina Niemetz1, Andres Nötzli1,

Alex Ozdemir1, Mathias Preiner1, Andrew Reynolds2, Cesare Tinelli2, and Yoni Zohar1

1Stanford University
2The University of Iowa

3University of Oxford
4Google

Abstract—This paper is a description of the CVC4 SMT solver as
entered into the 2019 SMT Competition. We only list important
differences from the 2018 SMT Competition version of CVC4.
For further and more detailed information about CVC4, please
refer to the original paper [14], the CVC4 website [10], or the
source code on GitHub [9].

OVERVIEW

CVC4 is an efficient open-source automatic theorem prover
for SMT problems. It can be used to prove the validity (or,
dually, the satisfiability) of first-order formulas in a large
number of built-in logical theories and combinations thereof.

CVC4 is intended to be an open and extensible SMT
engine, and it can be used as a stand-alone tool or as a
library, with essentially no limit on its use for research or
commercial purposes (see the section on its license below for
more information).

NEW FEATURES / IMPROVEMENTS

The CVC4 configuration entered in the SMT Competition
2019 is an improved and extended version of the version
that entered SMT-COMP 2018. Most notably, it features the
following extensions.

Eager Bit-Blasting Solver: Last year, we started using
CaDiCaL [2, 15] (GitHub master b44ce4f) as our SAT back-
end for eager bit-blasting. This year, we use CaDiCaL version
sr2019 as submitted to the SAT race 2019, which has now
been extended to support incremental solving [16]. We updated
our bit-vector solver to support CaDiCaL as a back-end for
incremental benchmarks. For this year’s version, we don’t
use ABC [1] for bit-blasting since CVC4’s bit-blasting solver
performs better with the internal bit-blasting infrastructure. We
have also optimized our Ackermannization [17] preprocessing
pass to generate fewer consistency lemmas.

String Solver: This year’s string solver is significantly
faster than last year’s. Besides tuning the heuristics, we
have added more aggressive rewriting and better reductions
for extended string operators such as str.contains and
str.indexof, which try to minimize the introduction of
new variables. Additionally, CVC4 now reduces certain regular
expression to extended string operators.

Floating-Point Solver: CVC4 uses a newer version of
SymFPU [13] (commit 8fbe139) than last year. The updated
version primarily fixes a correctness issue.

CONFIGURATIONS

This year’s version of CVC4 is entering all divisions of
the single query, the incremental, the industry, the unsat-
core, and the (experimental) model-validation tracks of SMT-
COMP 2019. All configurations are compiled with the op-
tional dependencies CLN [3], glpk-cut-log [12] (a fork of
GLPK [11]), CaDiCaL (version sr2019), and CryptoMiniSat
version 5.6.3. The commit used for all configurations is tagged
with smtcomp2019 [7]. For each track, we use a binary that
was compiled with different options and the corresponding run
script uses different parameters depending on the logic used
in the input. For details about the parameters used for each
logic, please refer to the run scripts at [4]–[6, 8].

Single Query Track (CVC4): For the Single Query
track, we configure CVC4 for optimized reading from non-
interactive inputs. We further configure it without proof sup-
port. For certain logics, we try different options sequentially
(see runscript at [6]).

Incremental Track (CVC4-inc): For the Incremental
track, we configured CVC4 for optimized reading from in-
teractive inputs and without proof support. In contrast to last
year’s version, we use the eager bit-blasting engine with CaD-
iCaL as a back-end (see runscript at [4]) for the Incremental
QF_BV track.

Industry Challenge Track (CVC4, CVC4-inc): For the
Industry Challenge Track, we use the same configurations
as for the Single Query and the Incremental tracks (see
runscripts at [4, 6]), depending on whether the division is non-
incremental or incremental.

Unsat-Core Track (CVC4-uc): For the Unsat Core
track, we configure CVC4 for optimized reading from non-
interactive inputs (see runscript at [8]). We further configure
it with proof support since the proof infrastructure is used for
computing unsat cores. Compared to last year, we removed
the options for unconstrained simplification [17] for QF_LRA
and eager bit-blasting for QF_UFBV because those options are
not currently compatible with unsat cores.

Model-Validation Track (CVC4-mv): For the model-
validation track, we use the same configuration as for the
Single Query track (see runscript at [5]).



COPYRIGHT

CVC4 is copyright 2009–2019 by its authors and con-
tributors and their institutional affiliations. For a full list of
authors, refer to the AUTHORS file distributed with the source
code [9].

LICENSE

The source code of CVC4 is open and available to students,
researchers, software companies, and everyone else to study, to
modify, and to redistribute original or modified versions; distri-
bution is under the terms of the modified BSD license. Please
note that CVC4 can be configured (however, by default it is
not) to link against some GPLed libraries, and therefore the
use of these builds may be restricted in non-GPL-compatible
projects. For more information about CVC4’s license refer to
the actual license text as distributed with its source code [9].

REFERENCES

[1] ABC. https://people.eecs.berkeley.edu/∼alanmi/abc/abc.htm, 2019.
[2] CaDiCaL. https://github.com/arminbiere/cadical, 2019.
[3] CLN. https://ginac.de/CLN/, 2019.
[4] CVC4 SMT-COMP 2019 Incremental Track run script.

https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/
run-script-smtcomp2019-incremental, 2019.

[5] CVC4 SMT-COMP 2019 Model Validation Track run script.
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/
run-script-smtcomp2019-model-validation, 2019.

[6] CVC4 SMT-COMP 2019 Single Query run script. https://github.
com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019,
2019.

[7] CVC4 SMT-COMP 2019 tag. https://github.com/CVC4/CVC4/releases/
tag/smtcomp2019, 2019.

[8] CVC4 SMT-COMP 2019 Unsat Core Track run script.
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/
run-script-smtcomp2019-unsat-cores, 2019.

[9] CVC4 source code. https://github.com/CVC4/CVC4, 2019.
[10] CVC4 website. http://cvc4.cs.stanford.edu, 2019.
[11] GLPK. https://www.gnu.org/software/glpk/, 2019.
[12] glpk-cut-log. https://github.com/timothy-king/glpk-cut-log, 2019.
[13] SymFPU. https://github.com/martin-cs/symfpu, 2019.
[14] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,

Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli.
CVC4. In CAV, volume 6806 of Lecture Notes in Computer Science,
pages 171–177. Springer, 2011.

[15] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT
Entering the SAT Competition 2017. In Tomáš Balyo, Marijn Heule, and
Matti Järvisalo, editors, SAT Competition 2017 – Solver and Benchmark
Descriptions, volume B-2017-1 of Department of Computer Science
Series of Publications B, pages 14–15. University of Helsinki, 2017.

[16] Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental
Inprocessing in SAT Solving. In Theory and Applications of Satisfiability
Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9-12, 2019, Proceedings, Lecture Notes in Computer
Science, to appear, 2019.

[17] Liana Hadarean. An efficient and trustworthy theory solver for bit-
vectors in satisfiability modulo theories. PhD thesis, Citeseer, 2015.

https://people.eecs.berkeley.edu/~alanmi/abc/abc.htm
https://github.com/arminbiere/cadical
https://ginac.de/CLN/
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019-incremental
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019-incremental
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019-model-validation
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019-model-validation
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019
https://github.com/CVC4/CVC4/releases/tag/smtcomp2019
https://github.com/CVC4/CVC4/releases/tag/smtcomp2019
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019-unsat-cores
https://github.com/CVC4/CVC4/blob/smtcomp2019/contrib/run-script-smtcomp2019-unsat-cores
https://github.com/CVC4/CVC4
http://cvc4.cs.stanford.edu
https://www.gnu.org/software/glpk/
https://github.com/timothy-king/glpk-cut-log
https://github.com/martin-cs/symfpu

	References

