
Boolector at the SMT Competition 2019
Aina Niemetz1, Mathias Preiner1, and Armin Biere2

1Stanford University
2Johannes Kepler University, Linz, Austria

Abstract—This paper serves as system description for our SMT
solver Boolector as entered into the SMT Competition 2019. We
only list important differences from the version of Boolector
that entered the SMT Competition 2018 [13]. For further and
more detailed information, we refer to [9, 10, 15, 16], the Boolector
website [2] or the source code on GitHub [1].

OVERVIEW

Boolector [10, 15] is an Satisfiability Modulo Theories
(SMT) solver for the theory of fixed-size bit-vectors with
arrays and uninterpreted functions and natively handles non-
recursive first-order lambda terms [16, 17]. It further supports
quantified bit-vectors [16, 18] and two different local search
strategies for quantifier-free bit-vector formulas that don’t rely
on but can be combined with bit-blasting [9, 11, 12, 14] in a se-
quential portfolio setting. Boolector supports the SAT solvers
CaDiCaL [5], CryptoMiniSat [19], Lingeling [6], PicoSAT [4]
and MiniSat [7] as back-end.

NEW FEATURES / IMPROVEMENTS

The version of Boolector entering SMT-COMP 2019 is an
improved and extended version of the version that entered the
SMT competition in 2018. Notable extensions and improve-
ments are listed below.

GMP as Back-End for Bit-Vector Implementation. Boolector
now supports The Gnu Multiple Precision Arithmetic Library
(GMP) [3] as back-end for bit-vector constants. This consid-
erably improves performance of the local search engines for
quantifier-free bit-vectors. Boolector provides two local search
engines for solving quantifier-free bit-vectors. One is based
on score-based stochastic local search (SLS) [14], which,
starting from an initial assignment, iteratively moves towards a
satisfying assignment by flipping bits of the input assignments.
The second approach is based on propagation-based local
search [11, 12], which, again starting from an initial assign-
ment, iteratively moves towards a satisfying assignment by
propagating target values from the outputs towards the inputs.
Both heavily rely on computations involving bit-vector values,
both when generating and updating assignment values, and
the latter when down-propagating target values. Previously,
Boolector used a custom bit-vector implementation that suf-
fered from performance degradation with increasing bit-widths
for bit-widths greater than 64. With GMP as the back-end, we
greatly improve the performance of Boolector’s local search

engines, as the performance of bit-vector computations is now
almost independent from the bit-width.

Incremental Solving with CaDiCaL. Since 2017, Boolector
supports CaDiCaL [5] as SAT back-end for non-incremental
quantifier-free bit-vector problems. Until this year, CaDiCaL
did not support incremental solving and thus, could not be used
for solving problems with arrays or uninterpreted functions as
well as incremental problems. Hence, last year, Lingeling [6]
was configured as the default SAT back-end for all divisions
except the non-incremental quantifier-free bit-vectors divisions
QF BV in the Main track, for which CaDiCaL was the default
SAT engine. This year, CaDiCaL has been extended to support
incremental solving [8] and is now the default SAT engine for
all tracks and divisions.

CryptoMiniSat Support. Boolector now additionally sup-
ports the SAT solver CrypotMiniSat [19] as SAT solver back-
end, which can optionally be configured to run in a multi-
threaded setting.

Incremental Solving Improvements. Preprocessing in
Boolector is by default applied as aggressive as possible on
the whole input formula for non-incremental and incremental
problems. This had the consequence that for incremental
problems, already bit-blasted parts of the formula were
rewritten and bit-blasted again. In many cases, this swamped
the SAT solver with redundant clauses, which resulted in
a considerable performance degradation. With this year’s
competition version, Boolector now applies preprocessing
more carefully to avoid rewriting already bit-blasted terms.

CONFIGURATIONS

The following three Boolector configurations are submitted
to the SMT competition 2019.

1) Boolector

This configuration uses CaDiCaL (version sr2019,
submitted to the SAT race 2019) as SAT back-end. It further
combines bit-blasting with propagation-based local search
techniques from [11, 12] in a sequential portfolio setting for
pure bit-vector problems. The local search engine is limited
to run for 10k propagations before falling back to bit-blasting.

Divisions: QF ABV, QF UFBV, QF AUFBV, QF BV, BV
Tracks: Single-Query, Industry-Challenge, Model-Validation

1



2) Boolector (incremental)

This configuration also uses CaDiCaL (version sr2019,
submitted to the SAT race 2019) as SAT back-end, which
now also supports incremental solving. It further enables
the incremental solving optimization discussed above and
is expected to perform considerable better than versions of
Boolector submitted in previous years.

Divisions: QF ABV, QF UFBV, QF AUFBV, QF BV
Tracks: Incremental, Industry-Challenge

3) Poolector

Poolector is a wrapper tool written in Python (∼100 LOC)
that runs four different Boolector configurations in a parallel
portfolio setting. The fastest configuration wins, i.e., as soon as
one Boolector configuration reports satisfiable or unsatisfiable,
all other instances are terminated.

Portfolio configuration (1) is identical to the Boolector
configuration submitted to the non-incremental track (with
CaDiCaL version sr2019). Two portfolio configurations
are variations of (1) with the SAT solvers (2) Lingeling
(version bcj), and (3) CryptoMiniSat (version 5.6.3). Portfolio
configuration (4) employs the stochastic local search [14]
techniques discussed above. Note that configuration (1) uses
the propagation-based local search approach in a sequential
portfolio setting, whereas (2) and (3) disable it.

Divisions: QF ABV, QF UFBV, QF AUFBV, QF BV, BV
Tracks: Single-Query, Industry-Challenge

COPYRIGHT

Boolector was initially developed by Armin Biere and
Robert Brummayer from 2007–2009. From 2009-2012 it was
maintained and extended by Armin Biere. Since 2012 it is
maintained and extended by Armin Biere, Aina Niemetz, and
Mathias Preiner.

LICENSE

Since May 2018, Boolector is available on GitHub [1] and
licensed under the MIT license. For more details, refer to the
actual license text, which is distributed with the source code.

REFERENCES

[1] Boolector source code. https://github.com/boolector/boolector.
[2] Boolector website. https://boolector.github.io.
[3] The GNU Multiple Precision Arithmetic Library. https://gmplib.org/.
[4] Armin Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.
[5] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT

Entering the SAT Competition 2017. In Tomáš Balyo, Marijn Heule, and
Matti Järvisalo, editors, SAT Competition 2017 – Solver and Benchmark
Descriptions, volume B-2017-1 of Department of Computer Science
Series of Publications B, pages 14–15. University of Helsinki, 2017.

[6] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT
Entering the SAT Competition 2018. In SAT Competition 2018 – Solver
and Benchmark Descriptions, 2018. To appear.

[7] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers,
volume 2919 of Lecture Notes in Computer Science, pages 502–518.
Springer, 2003.

[8] Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental
Inprocessing in SAT Solving. In Theory and Applications of Satisfiability
Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9-12, 2019, Proceedings, Lecture Notes in Computer
Science, to appear, 2019.

[9] Aina Niemetz. Bit-Precise Reasoning Beyond Bit-Blasting. PhD thesis,
Informatik, Johannes Kepler University Linz, 2017.

[10] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. JSAT,
9:53–58, 2015.

[11] Aina Niemetz, Mathias Preiner, and Armin Biere. Precise and complete
propagation based local search for satisfiability modulo theories. In
Swarat Chaudhuri and Azadeh Farzan, editors, CAV (1), volume 9779
of Lecture Notes in Computer Science, pages 199–217. Springer, 2016.

[12] Aina Niemetz, Mathias Preiner, and Armin Biere. Propagation based
local search for bit-precise reasoning. Formal Methods in System Design,
51(3):608–636, 2017.

[13] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector at the SMT
competition 2018. Technical report, FMV Reports Series, Institute for
Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria, 2018.

[14] Aina Niemetz, Mathias Preiner, Armin Biere, and Andreas Fröhlich.
Improving local search for bit-vector logics in SMT with path propaga-
tion. In Proceedings of the Fourth International Workshop on Design
and Implementation of Formal Tools and Systems, Austin, TX, USA,
September 26-27, 2015., pages 1–10, 2015.

[15] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere.
BTOR2, BtorMC and Boolector 3.0. In CAV, Lecture Notes in Computer
Science. Springer, 2018. To appear.

[16] Mathias Preiner. Lambdas, Arrays and Quantifiers. PhD thesis,
Informatik, Johannes Kepler University Linz, 2017.

[17] Mathias Preiner, Aina Niemetz, and Armin Biere. Lemmas on demand
for lambdas. In DIFTS@FMCAD, volume 1130 of CEUR Workshop
Proceedings. CEUR-WS.org, 2013.

[18] Mathias Preiner, Aina Niemetz, and Armin Biere. Counterexample-
guided model synthesis. In TACAS (1), volume 10205 of Lecture Notes
in Computer Science, pages 264–280, 2017.

[19] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT
solvers to cryptographic problems. In Oliver Kullmann, editor, Theory
and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceed-
ings, volume 5584 of Lecture Notes in Computer Science, pages 244–
257. Springer, 2009.

https://github.com/boolector/boolector
https://boolector.github.io
https://gmplib.org/

	References

