
The OpenSMT Solver in SMT-COMP 2019

Martin Blicha Antti E. J. Hyvärinen Matteo Marescotti
Natasha Sharygina

Università della Svizzera italiana (USI), Lugano, Switzerland

1 Overview

OpenSMT [8] is a T-DPLL based SMT solver [13] that has been developed at
USI, Switzerland, since 2008. The solver is written in C++ and currently supports
the quantifier-free logics of equality with uninterpreted functions (QF UF), and
linear real arithmetic (QF LRA). The solver has a rudimentary support for
quantifier-free linear integer arithmetic (QF LIA) based on branch-and-bound,
and supports some aspects of bit-vector logic.

In comparison to 2018, the 2019 competition entry features a wide range of
performance improvements in simplification, the Simplex algorithm [6], and the
Egraph algorithm [5], several bug fixes related to solver soundness, and improved
support for the logics. In the process, the solver high-level architecture improved
and low-level code cleaning resulted in fewer compiler warnings.

The solver development process is better defined in comparison to the pre-
vious state. The main public repository is now hosted in GitHub, where the
commit process is integrated with Travis CI to ensure the passing of regression
tests and different compilation. Commits are integrated to the master branch
through pull requests once they pass a human review and the Travis CI config-
uration.

OpenSMT features not exercised in the competition include support for a
wide range of interpolation algorithms for propositional logic [2], linear real
arithmetic [4], and uninterpreted functions [3]; an experimental lookahead-based
search algorithm [9] as an alternative to the more standard CDCL algorithm;
and features that support search-space partitioning in particular designed for
parallel solving [10].

2 External Code and Contributors

The SAT solver driving OpenSMT is based on the MiniSAT solver [7], and the
rational number implementation is inspired by a library written by David Mon-
niaux. Several people have directly contributed to the OpenSMT code. In alpha-
betical order, the major contributors are Leonardo Alt (Ethereum Foundation),
Sepideh Asadi (USI), Martin Blicha (USI, Charles University), Roberto Brut-
tomesso (Cybersecurity / Nozomi Networks), Antti E. J. Hyvärinen (USI), Mat-

1



teo Marescotti (USI), Edgar Pek (University of Illinois, Urbana-Champaign),
Simone Fulvio Rollini (United Technologies Research Center), Parvin Sadigova
(King’s College London), and Aliaksei Tsitovich (Sonova). The solver is being
developed in Natasha Sharygina’s software verification group at USI.

3 Utilization

OpenSMT is being used in a range of projects as a back-end solver. It does
interpolation for the Sally model checker [11] which won the transition systems
category in the constrained horn clause competition 2019. OpenSMT also forms
the basis of our own model checkers such as HiFrog [1]. OpenSMT is compatible
with the parallelization engine SMTS [12].

4 Download

More information on the solver and downloads are available at

• https://github.com/usi-verification-and-security/opensmt

• http://verify.inf.usi.ch/opensmt

References

[1] Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even-Mendoza,
Grigory Fedyukovich, Antti E. J. Hyvärinen, and Natasha Sharygina.
HiFrog: SMT-based function summarization for software verification. In
Proc. TACAS 2017, pages 207–213, 2017.

[2] Leonardo Alt, Grigory Fedyukovich, Antti E. J. Hyvärinen, and Natasha
Sharygina. A proof-sensitive approach for small propositional interpolants.
In Proc. VSTTE 2015, volume 9593 of LNCS, pages 1–18. Springer, 2016.

[3] Leonardo Alt, Antti Eero Johannes Hyvärinen, Sepideh Asadi, and Natasha
Sharygina. Duality-based interpolation for quantifier-free equalities and
uninterpreted functions. In Proc. FMCAD 2017, pages 39–46. IEEE, 2017.

[4] Martin Blicha, Antti E. J. Hyvärinen, Jan Kofron, and Natasha Sharygina.
Decomposing Farkas interpolants. In Proc. TACAS 2019, pages 3–20, 2019.

[5] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. J. ACM, 52(3):365–473, 2005.

[6] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic
solver for DPLL(T). In Proc. CAV 2006, volume 4144 of LNCS, pages 81–
94. Springer, 2006.

2

https://github.com/usi-verification-and-security/opensmt
http://verify.inf.usi.ch/opensmt


[7] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. SAT
2004, volume 2919 of LNCS, pages 502–518. Springer, 2004.

[8] Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt, and Natasha
Sharygina. Opensmt2: An SMT solver for multi-core and cloud computing.
In Proc. SAT 2016, pages 547–553, 2016.

[9] Antti E. J. Hyvärinen, Matteo Marescotti, Parvin Sadigova, Hana
Chockler, and Natasha Sharygina. Lookahead-based SMT solving. In
Proc. LPAR-22, pages 418–434, 2018.

[10] Antti E. J. Hyvärinen, Matteo Marescotti, and Natasha Sharygina. Search-
space partitioning for parallelizing SMT solvers. In Proc. SAT 2015, pages
369–386, 2015.

[11] Dejan Jovanovic and Bruno Dutertre. Property-directed k-induction. In
Proc. FMCAD 2016, pages 85–92. IEEE, 2016.

[12] Matteo Marescotti, Antti E. J. Hyvärinen, and Natasha Sharygina. SMTS:
distributed, visualized constraint solving. In Proc. LPAR-22, pages 534–
542, 2018.

[13] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT modulo theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). Journal of the ACM, 53(6):937 – 977,
2006.

3


	Overview
	External Code and Contributors
	Utilization
	Download

