SMT-COMP

→ annual competition for SMT solvers
→ on (a selection of) benchmarks from SMT-LIB

• first held in 2005
• 2013: evaluation instead of competition
• since 2014: hosted by StarExec

Goals

○ encourage scientific advances in SMT solvers
○ stimulate community to explore shared challenges
○ promote tools and their usage
○ engage and include new members of the community
○ support the SMT-LIB project to promote and develop the SMT-LIB format and collect relevant benchmarks
SMT solver: determine (un)satisfiability of benchmarks from SMT-LIB

- **SMT Solvers** in the ‘classical’ sense
- **Wrapper Tools**: call one or more other SMT solvers
- **Derived Tools**: based on and extends another SMT solver
- **Automated Theorem Provers** (e.g., Vampire)

→ **New** system description mandatory
→ **New** naming convention for derived tools
Tracks

- **Single Query Track** (previously: Main Track)
 - one **single** check-sat command, no push/pop commands
 - **New** remove benchmarks solved by all solvers in 2018 in $\leq 1s$
 - **New** selection of benchmarks
 - **New** time limit: 2400s (40 min)

- **Incremental Track** (previously: Application Track)
 - **multiple** check-sat and push/pop commands
 - solvers are executed on benchmarks via **trace executor**
 - **New** selection of benchmarks
 - **New** keep benchmarks with first check-sat status unknown
 - **New** execute solver **beyond** first status unknown check-sat call
 - **time limit**: 2400s (40 min)
• **Unsat Core Track**
 - one *single* check-sat command, *multiple* assert commands
 - benchmarks with *status* unsat
 - extract *unsat core* as set of top-level assertions
 - New *remove* benchmarks with a single assert command
 - New *selection* of benchmarks
 - *time limit*: 2400s (40 min)
Tracks

- **New: Challenge Track**
 - two subtracks: non-incremental and incremental
 - benchmarks that were *nominated* by their submitters for this track
 - *time limit*: 43200s (12 hours)

- **New: Model Validation Track** *(experimental)*
 - one *single* check-sat command,
 - *selection* of benchmarks with *status* sat
 - produce full, correct, well-formed *model* in SMT-LIB format
 - *only* for division QF_BV
 - *time limit*: 2400s (40 min)
→ **Tracks** are split into divisions

→ **Divisions** correspond to logics in SMT-LIB

- solvers are submitted to divisions in a track
- **winners** are declared
 - per division and track
 - with respect to different scoring schemes per track

- **New** do not run non-competitive divisions
Benchmark Selection

- **2015-2018**: all eligible benchmarks in a division
 - results more predictable
 - more of an evaluation than a competition
 - **Main Track (2018)**:
 - 78% solved by all participating solvers
 - 71% solved in ≤ 1 s
 - in 7 out of 46 divisions $> 99\%$ solved by all solvers

- **New** alternative benchmark selection
 - **remove** easy/uninteresting benchmarks
 - SQ: all benchmarks solved by all solvers in ≤ 1s in 2018
 - UC: all benchmarks with only a single assertion
 - **cap** number of instances in a division
 - $n \leq 300$: all instances
 - $300 < n \leq 600$: 300 instances
 - $n > 600$: 50% of the logic
 - guarantee inclusion of **new** benchmarks (at least one per family)
 - select benchmarks randomly using a uniform distribution
Single Query and Unsat Core Track Scoring

- **2016-2018**: weighted with respect to benchmark family size
 - → **goal**: de-emphasize large benchmark families
 - → fairly complicated, not necessarily intuitive
 - → complicates comparing paper and competition results

- **Competition report** for 2015-2018 (under review):
 - → families **no significant impact** on the (weighted) scores
 - ○ problems with scoring script (2016-2018)
 - ○ incorrect interpretation of benchmark family
 - ○ **after fix**: only one change (2017 AUFNIRA: CVC4 over Vampire)
 - → **unweighted**: only 7 out of 139 winners in 2016-2018 change

- **New** drop weighted scoring, use **unweighted** scheme from 2015
Scores

- **Single Query, Challenge (non-incremental):**
 number of correctly solved instances

- **Incremental, Challenge (incremental):**
 number of correctly solved check-sat calls

- **Unsat Core:**
 reduction in terms of top-level assertions

- **Model Validation:**
 number of correctly solved instances with validated models
Scores

- **sequential score** (SQ, CHSQ, UC, MV)
 time limit applied to CPU time

- **parallel score** (all)
 time limit applied to wall-clock time

- **New sat score** (SQ, CHSQ)
 parallel score for satisfiable instances

- **New unsat score** (SQ, CHSQ)
 parallel score for unsatisfiable instances

- **New 24s score** (SQ, CHSQ)
 parallel score for time limit of 24s
Competition-Wide Recognitions

- **2014-2018:**
 - competition-wide scores as weighted sum of division scores
 - emphasis on number of entered divisions

- **New** replace with **two new competition-wide rankings**
 - focus on measures that make sense to compare between divisions
 - for all scores in a track

- **biggest lead**
 - in terms of score over the solver in the second place
 - tie: ranked by biggest lead in CPU/wall-clock time

- **largest contribution**
 - ranked by contribution to virtual best solver in terms of score
 - tie: ranked by largest contribution in terms of CPU/wall-clock time
Competition Overview

<table>
<thead>
<tr>
<th>Track</th>
<th>Solvers</th>
<th>Divisions</th>
<th>Benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>C/NC</td>
<td>Total</td>
</tr>
<tr>
<td>SQ</td>
<td>51 (+27)</td>
<td>37/14</td>
<td>57 (+7)</td>
</tr>
<tr>
<td>Inc</td>
<td>22 (+16)</td>
<td>14/8</td>
<td>29 (+8)</td>
</tr>
<tr>
<td>CHSQ</td>
<td>21 (+21)</td>
<td>15/6</td>
<td>3 (+3)</td>
</tr>
<tr>
<td>CHInc</td>
<td>12 (+12)</td>
<td>7/5</td>
<td>3 (+3)</td>
</tr>
<tr>
<td>UC</td>
<td>14 (+9)</td>
<td>8/6</td>
<td>38 (-6)</td>
</tr>
<tr>
<td>MV</td>
<td>10 (+10)</td>
<td>10/0</td>
<td>1 (+1)</td>
</tr>
</tbody>
</table>

C ... Competitive NC ... Non-Competitive Exp ... Experimental

Teams: 23 (+6)

StarExec Stats: 21.4 years CPU time; 1,022,802 job pairs
Non-Competitive Solvers

Total: 14 (SQ), 8 (Inc), 6 (CHSQ), 5 (CHINC), 6 (UC)

- submitted by organizers
 - Z3 4.8.4
 - best solvers 2018 (SQ: 9, Inc: 5, CHSQ: 3, CHINC: 3, UC: 5)

- submitted by participants
 - 2 derived tools (Boolector-ReasonLS, CVC4-SymBreak)
 - 3 fixed solver versions (1 x CVC4, 2 x STP)
Solver Presentations

Boolector, COLIBRI, CVC4, MathSAT, OpenSMT, SPASS-SATT, Vampire, VeriT Yices
Boolector at the SMT-COMP’19
Aina Niemetz, Mathias Preiner, Armin Biere

Tracks/Divisions

Single Query: BV, QF_ABV, QF_AUFBV, QF_BV, QF_UFBV
Incremental: QF_ABV, QF_AUFBV, QF_BV, QF_UFBV
Challenge: QF_ABV, QF_AUFBV, QF_BV
Model Validation: QF_BV

Improvements

- Incremental improvements to avoid redundant clauses in SAT solver
- SAT race 2019 version of CaDiCaL for all logics and tracks
 ▶ now default SAT engine for incremental and non-incremental
- GMP for faster BV implementation (improving LS engines)
- CryptoMiniSat support

Configurations

- Boolector: Combination of prop.-based local search + bit-blasting
 ▶ Local search for QF_BV and BV
- Poolector: Portfolio of four parallel (non-incremental) Boolector configurations:
 ▶ CaDiCaL, Lingeling, CryptoMiniSat, and SLS (for QF_BV)

https://boolector.github.io
QF_FP: Since last year small bug fix and improvements

- Forgot to participate to QF_FPLRA
- Focused on 25s
Divisions
This year’s configuration of CVC4 enters all divisions in all tracks.

New Features/Improvements

- Eager bit-blasting solver:
 - New version of CaDiCaL with support for incremental solving
 - Support for incremental eager bit-blasting with CaDiCaL as backend (QF_BV)
 - Not using ABC anymore
 - Fewer consistency lemmas in Ackermannization preprocessing pass

- String solver: better heuristics, more aggressive rewriting, more efficient reductions of extended operators

- Floating-point solver: new version of SymFPU (primarily bug fixes)

Configurations

- Industry Challenge Track and Model-Validation Track: Same configurations as Single Query Track

- Unsat-Core Track: Fixed last year’s configuration that had errors on QF_UFBV
OpenSMT

A relatively small DPLL(T)-based SMT Solver
Developed at University of Lugano, Switzerland
Supports QF_UF, QF_LRA, and to some extent QF_BV

Lookahead-Based SMT
Theory refinement
Interpolation (esp. in LRA)
Integration to model checkers HiFrog and Sally

2018-2019: Performance improvements, better defined development process

Available from http://verify.inf.usi.ch/opensmt
Developers:
Martin Bromberger, Mathias Fleury, Simon Schwarz, Christoph Weidenbach

Ground Linear Arithmetic Solver:
- newest tool in the SPASS Workbench
- combines our theory solver SPASS-IQ and our unnamed SAT solver
- supports QF_LIA, QF_LRA, (and QF_LIRA)
- complete but efficient theory solver [IJCAR2018]
- uses fast cube tests [IJCAR2016, FMSD2017]
- SAT decisions based on theory solver information
- uses many more well-known techniques for linear arithmetic
Developers:
Martin Bromberger, Mathias Fleury, Simon Schwarz, Christoph Weidenbach

Ground Linear Arithmetic Solver:
• newest tool in the SPASS Workbench
• combines our theory solver SPASS-IQ and our unnamed SAT solver
• supports QF_LIA, QF_LRA, (and QF_LIRA)
• complete but efficient theory solver [IJCAR2018]
• uses fast cube tests [IJCAR2016, FMSD2017]
• SAT decisions based on theory solver information
• uses many more well-known techniques for linear arithmetic

http://www.spass-prover.org/spass-satt
Vampire 4.4-SMT

Giles Reger1, Martin Suda2, Andrei Voronkov15, Evgeny Kotelnikov3, Simon Robillard3, Laura Kovács4, and Martin Riener1

SMT Comp 2019
July 8, Lisbon, Portugal

1University of Manchester, Manchester, UK

2Czech Technical University in Prague, Czech Republic

3Chalmers University of Technology, Gothenburg, Sweden

4Institute for Information Systems, Vienna University of Technology, Austria

5Easychair
Features

• Superposition based First Order Resolution Prover
• Finite Model Finding
• Inst-gen
• Redundancy elimination
• Splitting via AVATAR
• Sine axiom selection
• Induction
• CASC since 1999
SMT Related Features

- SMT Logics: A, DT, LIA, LRA, NIA, NRA, UF
- Single Queries
- SMT since 2016
- Theory axioms
- AVATAR modulo theories (ground splitting via Z3)
- Unification with abstraction
- Theory instantiation
Available online

https://vprover.github.io

https://github.com/vprover/vampire
What is new (not yet in the SMT-COMP version):

- cleaning, efficiency improvements
- λ-free Higher-order
- improved quantifier handling (ML, instantiation, superposition)
- better proofs

Goals:

- clean, small SMT for UF(N|L)IRA with quantifiers and proofs
- for verification platforms B, TLA+
Yices 2 in SMTCOMP 2019

Yices 2

- Supports linear and non-linear arithmetic, arrays, UF, bitvectors
- Supports incremental solving and unsat cores
- Includes two types of solvers: classic CDCL(T) + MC-SAT
- https://github.com/SRI-CSL/yices2
- https://yices.csl.sri.com

New in 2019

- Models in SMT-LIB2 format
- Improved bitblasting-based solver
- MC-SAT for bitvectors
- Thread-safe
Bitblasting-Based Solver

Bitblasting in Yices 2
- implemented in 2009 + extended with many simplifications and rewriting rules
- uses a relatively simple CDCL solver (no preprocessing, simple heuristics)
- incremental

New developments
- support for third-party SAT-solvers (as long as provide the right API)
- currently supported:
 - CaDiCal (Armin Biere)
 - CryptoMiniSAT (Mate Soos)
- We also have developed a new, more performant CDCL-based SAT solver to replace the default
MC-SAT for Bitvectors

MC-SAT
- alternative to CDCL(T)
- in Yices: used primarily for non-linear arithmetic (+ UF)

New developments
- extended MC-SAT to QF_BV: our goal is to support word-level reasoning
 - BDDs for representing sets of values
 - specialized reasoning components for two QF_BV fragments:
 - concatenation + extraction + equalities
 - (simple) linear-arithmetic
 - unsat cores + bit-blasting outside these fragments
- still work in progress, very fast on some examples
MathSAT5 (Nonlinear) at the SMT Competition 2019

Ahmed Irfan1, Alessandro Cimatti2, Alberto Griggio2, Roberto Sebastiani3

1 Stanford University, USA
2 Fondazione Bruno Kessler, Italy
3 University of Trento, Italy

– SMT Competition 2019, Lisbon, Portugal –
MathSAT5 (Nonlinear)

MathSAT5, a DPLL(T) solver

- supports most SMT-LIB theories + functionalities (e.g. unsat cores, interpolation, ALLSMT)
- supports nonlinear arithmetic on reals & integers + transcendental functions (sin(), exp())
 - based on incremental linearization: abstraction/refinement to SMT(QF_UFLA)
 - multiplication, sin() and exp() modeled by uninterpreted functions
 - incrementally axiomatized on demand by linear constraints

Participation and Configurations

- Categories:
 - Single query track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NIRA, QF_NRA, QF_UFNIA, QF_UFNRA.
 - Incremental track: QF_ANIA, QF_AUFBVNIA, QF_NIA, QF_UFNIA.
 - Unsat Core track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NIRA, QF_NRA, QF_UFNIA, QF_UFNRA.

- Submitted versions:
 - MathSAT default: public release version 5.5.4 + minor fixes, ≈ as described in our SAT’18 paper
 - MathSAT-na-ext: MathSAT default
 - use of lazier strategy for the instantiation of linearization lemmas;
 - try to minimize the Boolean assignment that are given to theory solvers;
 - use bi-implication tangent lemmas:
 - linearization lemmas learnt only temporarily
SMT-COMP 2019 Results

Competition-Wide Recognitions

Largest Contribution Ranking
- Challenge Track (incremental)
- Challenge Track (non-incremental)
- Incremental Track
- Model Validation Track (experimental)
- Single Query Track
- Unsat Core Track

Biggest Lead Ranking
- Challenge Track (incremental)
- Challenge Track (non-incremental)
- Incremental Track
- Model Validation Track (experimental)
- Single Query Track
- Unsat Core Track

Tracks Summary
- Challenge Track (incremental)
- Challenge Track (non-Incremental)
- Incremental Track
- Model Validation Track (experimental)
- Single Query Track
- Unsat Core Track

Divisions
- ABVFP
 - Incremental Track
 - Single Query Track
Competition-Wide Recognitions

Trophies
Trophies: Largest Contribution

<table>
<thead>
<tr>
<th>Single Query</th>
<th>1st Place</th>
<th>2nd Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq</td>
<td>CVC4 (QF_NIA)</td>
<td>Vampire (UF)</td>
</tr>
<tr>
<td>par</td>
<td>CVC4 (QF_NIA)</td>
<td>Vampire (UF)</td>
</tr>
<tr>
<td>sat</td>
<td>Par4 (AUFLIRA)</td>
<td>SMTInterpol (UFLIA)</td>
</tr>
<tr>
<td>unsat</td>
<td>Par4 (UFNIA)</td>
<td>Vampire (UF)</td>
</tr>
<tr>
<td>24s</td>
<td>Vampire (UF)</td>
<td>Par4 (UFNIA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incremental</th>
<th>1st Place</th>
<th>2nd Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>CVC4 (UFLRA)</td>
<td>Boolector (QF_BV)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unsat Core</th>
<th>1st Place</th>
<th>2nd Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq</td>
<td>CVC4 (AUFLIRA)</td>
<td>MathSAT (QF_NIA)</td>
</tr>
<tr>
<td>par</td>
<td>CVC4 (AUFLIRA)</td>
<td>MathSAT (QF_NIA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Challenge</th>
<th>1st Place</th>
<th>2nd Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>Yices (QF_AUFBV)</td>
<td>Boolector (QF_ABV)</td>
</tr>
</tbody>
</table>
Trophies: Biggest Lead

<table>
<thead>
<tr>
<th>Single Query</th>
<th>1<sup>st</sup> Place</th>
<th>2<sup>nd</sup> Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq</td>
<td>CVC4 (FP)</td>
<td>Par4 (UFBV)</td>
</tr>
<tr>
<td>par</td>
<td>CVC4 (FP)</td>
<td>Par4 (UFBV)</td>
</tr>
<tr>
<td>sat</td>
<td>CVC4 (AUFDTLIA)</td>
<td>Par4 (AUFLIRA)</td>
</tr>
<tr>
<td>unsat</td>
<td>CVC4 (BVFP)</td>
<td>SMT-RAT (QF_NIRA)</td>
</tr>
<tr>
<td>24s</td>
<td>CVC4 (BVFP)</td>
<td>Par4 (UFBV)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incremental</th>
<th>1<sup>st</sup> Place</th>
<th>2<sup>nd</sup> Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>CVC4 (ANIA)</td>
<td>Yices (QF_AUFBV)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unsat Core</th>
<th>1<sup>st</sup> Place</th>
<th>2<sup>nd</sup> Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq</td>
<td>CVC4 (UFLIA)</td>
<td>Yices (QF_AX)</td>
</tr>
<tr>
<td>par</td>
<td>CVC4 (UFLIA)</td>
<td>Yices (QF_AX)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Challenge</th>
<th>1<sup>st</sup> Place</th>
<th>2<sup>nd</sup> Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>Yices (QF_AUFBV)</td>
<td>Boolector (QF_ABV)</td>
</tr>
</tbody>
</table>
Discussion

- **time limit**
 - increased back to 2400s (from 1200s 2017-2018) in SQ track
 - only -3953 instances if cut off at **1200s** (sequential score)
 - $\sim 50\%$ of the timeouts in **quantified** divisions

 \rightarrow run selected challenging benchmarks in the **challenge track**

 \rightarrow **decrease** time limit (maybe even further) for **other tracks**

 \rightarrow shorter time limit for **quantified divisions**?
 (typically: solved within short time or “never”)
Discussion

- **divisions**
 - size of competitions is getting out of hand
 - this year we didn’t run non-competitive divisions

 → **don’t run** if less than 3? 4? competitive participants?

- **parallel score**
 - StarExec only offers 4 cores per job
 - not interesting for real parallelism

 → **future plans**: dedicated **parallel track**

 → would require to move away from StarExec
Discussion

• **portfolio wrapper tools**
 - wrapper tools allowed to participate without restrictions
 - problems with portfolio (not author of the wrapped solvers)
 - win with simple script and work of other teams
 - negative/unfair impact on competition-wide rankings
 - progress of non-portfolio tools harder to distinguish
 - disallowing wrapper tools entirely is problematic (example: Vampire)

 → **disallow** portfolio with wrapped solvers from other teams?
 → only allow non-competitive submission?
 → at least **exclude** them from competition-wide recognitions
 → **similar issues** with SATzilla-style systems
• Mathias Preiner (benchmark selection and scoring scripts)
• Aaron Stump (StarExec)
• Andres Nötzli (trace executor extension)
• Marco Gario and Andrea Micheli (PySMT)
• Martin Riener (certificates/trophies logistics)