Boolector at the SMT Competition 2014

Aina Niemetz, Mathias Preiner, and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract—This paper serves as solver description for our SMT
solver Boolector entering the SMT Competition 2014 in three
different configurations. We only list important differences to
the earlier version of Boolector that participated in the SMT
Competition 2012 [2]. For further information we refer to [2] or
source code.

OVERVIEW

This year’s version of Boolector considerably differs from
the version submitted to the SMT competition in 2012. First
and foremost, we introduced a new lemmas on demand
decision procecure DP, for lambdas as described in [6],
which replaces the decision procedure for arrays introduced
in [5]. Internally, we now represent all array operations and
arrays as lambda terms and uninterpreted functions. Further,
we introduced several improvements to a number of internal
components of Boolector. Finally, we use an internal version
of our SAT solver Lingeling, which is close to the version
submitted to the SAT competition 2014, as back-end solver.

Note that D Py, does not yet support extensionality on arrays.
Thus, for benchmarks in the QF_ABYV track, we use an older
internal version of Boolector to handle extensionality on arrays
in case that the input file is still extensional after rewriting.

In the following, we discuss the most notable improvements
compared to the competition version of 2012.

IMPROVEMENTS

We made several improvements to the SMT2 parser and
added support for SMT2 macros (define-fun commands).

Boolector now implements a new model generation algo-
rithm to fix the performance drop of older versions in case
model generation is enabled. The overhead of the new model
generation algorithm is now negligible.

Similar to cloning in Lingeling [3][2], Boolector now also
supports cloning and provides a clone function to generate an
exactly identical copy of a Boolector instance.

We made a lot of improvements in terms of testing and
debugging Boolector. Among others, we introduced API call
tracing (recording/replaying API call sequences that trigger
erroneous behaviour), model-based testing (c.f. [1]), and an
internal validation of models for satisfiable instances after each
SAT call. Due to these new testing and debugging techniques,
we identified and fixed several bugs in Boolector since the
previous competition in 2012, including several fixes in the
rewriting engine and incremental APL

We further fixed the previously disabled unconstrained
optimization, which is enabled by default in the current
competition configurations.

Finally, we implemented two new optimization techniques
based on don’t care reasoning to speed-up our lemmas on
demand procedure.

CONFIGURATIONS

This year, one configuration of Boolector (“Boolector”)
competes in the QF_BV track, whereas two different config-
urations “Boolector (dual propgation)” and “Boolector (justi-
fication)”, which enable don’t care reasoning to optimize the
lemmas on demand procedure, compete in the QF_ABYV track.

QF_BV configuration: Boolector

Since the current version of Boolector handles define-fun
commands lazily (as described in [6]), we enabled full beta
reduction to eagerly eliminate macros. Further, we disabled the
simpdelay feature of Lingeling (which was previously enabled
in version 1.5.118 of Boolector).

QF_ABYV configuration 1: Boolector (dual propagation)

For this configuration we enabled our first optimization
technique, which employs don’t care reasoning and is based
on dual propagation. We expect this configuration to be a bit
slower than the Boolector (justification) configuration due to
the overhead produced by the dual propagation solver.

QF_ABYV configuration 2: Boolector (justification)

For this configuration we enabled the second don’t care rea-
soning optimization technique, which is based on justification.

COPYRIGHT

Boolector has been originally developed by Robert Brum-
mayer and Armin Biere at the FMV institute. Since 2009 it
was maintained and extended by Armin Biere. Since 2012 it
is maintained and extended by Armin Biere, Aina Niemetz,
and Mathias Preiner.

LICENSE

For the competition version of Boolector we use the same
license scheme as introduced last year for our SAT solver
Lingeling [4]. It allows the use of the software for academic,
research and evaluation purposes. It further prohibits the use
of the software in other competitions or similar events without
explicit written permission. Please refer to the actual license,
which comes with the source code, for more details.



(1]

[2]

[3]

(4]

(51
(6]

REFERENCES

Cyrille Artho, Armin Biere, and Martina Seidl. Model-Based Testing
for Verification Back-Ends. In Margus Veanes and Luca Vigano, editors,
TAP, volume 7942 of Lecture Notes in Computer Science, pages 39-55.
Springer, 2013.

A. Biere. Boolector Entering the SMT Competition 2012. Technical
report, FMV Reports Series, Institute for Formal Models and Verification,
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria, 2012.
A. Biere. Lingeling and Friends Entering the SAT Challenge 2012. In
Proc. of SAT Challenge 2012: Solver and Benchmark Descriptions, vol-
ume B-2012-2 of Department of Computer Science Series of Publications
B, University of Helsinki, pages 33-34, 2012.

A. Biere. Lingeling, Plingeling and Treengeling entering the SAT
Competition 2013. In A. Belov, M. Heule, and M. Jdrvisalo, editors,
Proc. of SAT Competition 2013, volume B-2013-1 of Department of
Computer Science Series of Publications B, University of Helsinki, pages
51-52, 2013.

Robert Brummayer and Armin Biere. Lemmas on Demand for the
Extensional Theory of Arrays. JSAT, 6(1-3):165-201, 2009.

Mathias Preiner, Aina Niemetz, and Armin Biere. Lemmas on De-
mand for Lambdas. In Malay K. Ganai and Alper Sen, editors,
DIFTS@FMCAD, volume 1130 of CEUR Workshop Proceedings. CEUR-
WS.org, 2013.



