
SMTInterpol
Version 2.0

Jürgen Christ Jochen Hoenicke Alexander Nutz
University of Freiburg

{christj,hoenicke,nutz}@informatik.uni-freiburg.de

Introduction

SMTInterpol [CHN12] is a proof-producing and interpolating SMT-solver written in Java. It is avail-
able from http://ultimate.informatik.uni-freiburg.de/smtinterpol under the GNU Lesser
General Public License (LGPL) version 3.0. The solver reads input in SMTLIB format. It includes a
parser for version 1.2, and a parser for the current version. All required and some optional commands
of the SMTLIB standard are supported. SMTInterpol supports the quantifier-free combination of unin-
terpreted functions and linear (real and integer) arithmetic, i. e., the SMTLIB logics QF UF, QF LIA,
QF LRA, QF UFLIA, and QF UFLRA. For all these logics, SMTInterpol supports the computation of
inductive sequences of Craig interpolants, which are used by several interpolation-based model check-
ers [HHP09, HHP10, EHP12].

All formulas are stored in a central term repository. The repository type-checks the formulas. As-
serted formulas are converted to CNF using Plaisted–Greenbaum encoding [PG86]. The core of the
solver is a CDCL engine that is connected to multiple theories. The engine uses these theories during
constraint propagation, backtracking, and consistency checking.

For uninterpreted functions and predicates, we use a theory solver based on the congruence closure
algorithm. An extension to arrays and quantifiers via e-matching is under development. For linear
arithmetic, we use a theory solver based on the Simplex algorithm [DdM06]. It always computes the
strongest bounds that can be derived for a variable and uses them during satisfiability checks. If a
conflict cannot be explained using known literals, the solver derives new literals and uses them in conflict
explanation. Disequalities are used to strengthen bounds, or are delayed until final checks. The solver
supports integer arithmetic using a variant of the cuts from proof technique [DDA09] together with a
branch-and-bound engine.

SMTInterpol uses a variant of model-based theory combination [dMB08]. The linear arithmetic
solver does not propagate equalities between shared variables but introduces them as decision points.
The model mutation algorithm resolves disequalities and tries to create as many distinct equivalence
classes as possible.

Interpolation

SMTInterpol produces inductive sequences of interpolants for the SMTLIB logics QF UF, QF LRA,
QF UFLRA, QF LIA, and QF UFLIA. Since the integer logics defined in the SMTLIB standard are not
closed under interpolation, SMTInterpol extends these logics with the division and modulo operators
with constant divisor.

The architecture of the interpolation engine roughly follows the DPLL(T) paradigm: A core inter-
polator produces partial interpolants for the resolution steps while theory specific interpolators produce
partial interpolants for T-lemmas. In the presence of mixed literals, i.e., literals that use symbols from
more than one block of the interpolation problem, an approach loosely based on the method of Yorsh
et al. [YM05] is used. The basic idea of the approach used in SMTInterpol is to virtually purify each
mixed literal using an auxiliary variable, to restrict the places where the variable may occur in partial

1

http://ultimate.informatik.uni-freiburg.de/smtinterpol


SMTInterpol Christ, Hoenicke, and Nutz

interpolants, and to use special resolution rules to eliminate the variable when the mixed literal is used
as a pivot. In essence, for convex theories, this approach can be seen as a lazy version of the method of
Yorsh et al. The approach also works for non-convex theories using disjunctions in the interpolants.

New Developments

Compared to the version that participated in the SMT competition in 2011, several performance improve-
ments have been implemented. These include clause minimization techniques and a new pivot strategy
in the linear arithmetic solver. Additionally, the assertion stack management has been reworked to be
more stable.

For unsatisfiable formulas, SMTInterpol supports the optional SMTLIB command get-unsat-core.
This command extracts an unsatisfiable core from a proof tree. This technique does not guarantee min-
imality of the returned core. The optional command get-proof was already supported in last year’s
version. Additionally, the non-standard command get-interpolants can be used to compute an in-
ductive sequence of Craig interpolants. The interpolation engine is complete for all logics supported by
SMTInterpol.

For satisfiable formulas, SMTInterpol supports the optional SMTLIB command get-value and the
non-standard command get-model. These commands can be used to inspect the model produced by
SMTInterpol. For uninterpreted sorts, SMTInterpol generates a finite sort interpretation. The domain of
this interpretation contains input terms instead of abstract values (see the SMTLIB standard).

References
[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpolating SMT solver. In

SPIN, pages 248–254, 2012. to appear.
[DDA09] Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and practical technique for

solving linear inequalities over integers. In CAV, pages 233–247, 2009.
[DdM06] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV, pages

81–94, 2006.
[dMB08] Leonardo de Moura and Nikolaj Bjørner. Model-based theory combination. Electr. Notes Theor. Com-

put. Sci., 198(2):37–49, 2008.
[EHP12] Evren Ermis, Jochen Hoenicke, and Andreas Podelski. Splitting via interpolants. In VMCAI, pages

186–201, 2012.
[HHP09] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement of trace abstraction. In

SAS’09, number 5673 in LNCS, pages 69–85. Springer, 2009.
[HHP10] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants. In POPL’10, pages

471–482. ACM, 2010.
[PG86] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form translation. J. Symb.

Comput., 2(3):293–304, 1986.
[YM05] Greta Yorsh and Madanlal Musuvathi. A combination method for generating interpolants. In CADE,

pages 353–368, 2005.

2



SMTInterpol Christ, Hoenicke, and Nutz

A Proof Format of SMTInterpol

SMTInterpol stores resolution proofs produced by the CDCL engine. It does not directly track all con-
version steps. Instead, it produces a two-tiered proof.

A proof object in SMTInterpol derives a clause from the input clauses and the underlying theories.
It can either be a theory lemma, a conversion lemma, an input clause, or a resolution proof. The object
returned by the command get-proof gives the proof object for the empty clause. We use let to bind
proof objects to variables.

A.1 Resolution Rule in SMTInterpol

To build resolution proofs, SMTInterpol uses a left-associative binary resolution function @res. It takes
two arguments, which are two proof objects for the antecedent clauses, and returns the proof object for
the resolvent clause. The resolvent clause is never explicitly given, as it can be easily derived from the
arguments.

The second argument of the @res function is annotated by the pivot literal used in the rule. The
literal is given explicitly; auxiliary literals are expanded, so the literal can be represented by formulas
containing Boolean operations. From the viewpoint of the resolution proofs these are just names of the
literals, though, and they must appear in exactly the same way in the input clauses. The pivot literal
occurs positively in the second argument (where it is annotated) and negatively in the first argument.

Example 1. We show one simple application of the @res rule.

(let ((@pn0 ...) (@pn1 ...) (@pn2 ...) (@pn6 ...))

(@res @pn0

(! @pn1 :pivot (<= (+ (- (g x)) (f x)) 0))

(! (@res @pn2

(! @pn6 :pivot (not (= (g x) (f x)))))

:pivot (distinct (+ (- (g x)) (f x)) 0))))

Input to the resolution function @res are other nodes in the proof tree. Note that this example exploits
left-associativity of @res to compress the proof tree.

A.2 Conversion Proofs

SMTInterpol does not produce a fine-grained proof for the conversion of an arbitrary formula into CNF.
Instead, it outputs for every clause c in the CNF conversion of a formula φ a proof using the auxiliary
tautology clause c∨¬φ (the conversion lemma) and a resolution step with pivot φ . The proof object
for a conversion lemma is the clause without any annotations. The proof object for the input formula is
the formula itself (which can be seen as a literal) annotated with :asserted (optionally followed by the
name of the formula).

Example 2. We show one simple conversion proof step that justifies the creation of a unit clause con-
taining the literal x1− b1 + 12 ≤ 0 from the asserted conjunction x1 ≤ b1− 12∧ f (b1− 7) = b2. This
assertion was asserted with the top-level name IP_1 that is mentioned after the keyword :asserted.

(let ((@pn1

(@res

(or (not (and (<= x1 (- b1 12)) (= (f (- b1 7)) b2)))

(<= (+ (- b1) (+ x1 12)) 0))

3



SMTInterpol Christ, Hoenicke, and Nutz

(! (and (<= x1 (- b1 12)) (= (f (- b1 7)) b2))

:asserted "IP_1"

:pivot (and (<= x1 (- b1 12)) (= (f (- b1 7)) b2))

)

)

))...)

A.3 Theory Lemmas

SMTInterpol annotates every theory lemma with :lemma and an additional annotation that justifies the
conflict responsible for the creation of this lemma. In the following we will give a short overview of the
different annotations.

A.4 Congruence Proofs

A theory conflict detected by congruence closure corresponds to a path in the congruence graph between
two elements which are asserted (either by the user or by the theory in use) to be distinct. The edges of
this path might either be equalities asserted by the core solver or congruence edges. For the latter kind
of edges we need a justification which again consists of asserted equalities or congruence edges.

The annotation produced by our congruence closure algorithm contains all these paths. The dise-
quality that is responsible for the explained conflict is kept separately. A main path connects the left
hand side of this disequality with the right hand side. Every step on this path is either a direct equality
explained by a literal appearing in the conflict, or a congruence explained by additional paths between
the function arguments. The disequality is omitted if it is justified by the theory in use, e.g., if it has form
c1 6= c2 for two distinct numerical constants c1 and c2.

Annotations produced by congruence closure are indicated by the keyword :CC. The justifications
for congruences are indicated by the keyword :subpath followed by the corresponding path.

Example 3. We show one simple proof node produced by congruence closure.

(! (or (= (g x) (f x)) (not (= (f x) (g y))) (not (= x y)))

:lemma (:CC ((not (= (g x) (f x)))

:subpath ((g x) (g y) (f x))

:subpath (x y))))

The annotation states that this clause is a theory lemma produced by the congruence closure algorithm.
It shows the disequality causing the conflict (g(x) 6= f (x)) along with the explanation that these terms
should be congruent. The first path in this annotation shows that the congruence can be derived from the
congruence of g(x) and g(y) and the equality of g(y) and f (x). The second path explains the congruence
between g(x) and g(y) through the equality of x and y.

A.5 Linear Arithmetic Proofs

Theory conflicts generated by the linear arithmetic solver correspond to applications of Farkas’ lemma
which states that a system of inequalities ∑ j ai jx j ≤ bi is inconsistent if and only if there exist non-
negative coefficients ci such that the linear sum of the rows ∑i ci ∑ j ai jx j is zero and the sum of the
bounds ∑i cibi is negative. The rows are either literals asserted by the core solver or derivations explained
by sub-annotations. We allow the theory conflict to contain lower bounds, upper bounds, equalities, or
disequalities. The Farkas coefficient must be non-negative for lower bounds, non-positive for upper

4



SMTInterpol Christ, Hoenicke, and Nutz

bounds, and can be arbitrary for equalities. For disequalities the lemma must contain a corresponding
inequality.

Sub-annotations are created when a disequality is used to strengthen an inferred bound that does not
appear directly in the conflict. The sub-annotation explains the derivation of this bound from the literals
in the conflict. The main annotation contains the corresponding disequality and the sub-annotation that
is strengthened by the disequality. Sub-annotations can be arbitrarily nested.

Sub-annotations can also explain how to sum up rows to derive a cut. This cut has to be strengthened
to the next integer, i.e., the flooring (resp. ceiling) of the bound is used if the constraint represents an
upper (resp. lower) bound on the variable and the sub-annotation does not sum up to an integer value.
Sub-annotations are semantically equivalent to a separate lemma explaining an auxiliary literal, which
is then resolved with the main annotation by pivoting on the auxiliary literal. Using sub-annotations the
solver can avoid creating too many auxiliary literals in the CDCL engine.

Annotations produced by the linear arithmetic solver are indicated by the keyword :LA. Farkas proofs
are indicated by the keyword :farkas. The sub-annotations are indicated by the keyword :subproof

Example 4. We show a small proof node generated by the linear arithmetic solver. This proof node
contains a subproof that is strengthened by a disequality.

(! (or (distinct (+ (- y) (+ x (- 1))) 0) (>= (+ y (- 6)) 0)

(<= (+ y (- 4)) 0) (= (+ x (- 6)) 0))

:lemma (:LA (:farkas (

(* 1 (= (+ (- y) (+ x (- 1))) 0))

(* 1 (<= (+ y (- 5)) 0)))

(:subproof (* 1 (:farkas (

(* -1 (distinct (+ x (- 6)) 0)))

(:subproof (* 1 (:farkas (

(* -1 (= (+ (- y) (+ x (- 1))) 0))

(* -1 (>= (+ y (- 5)) 0))))))))))))

Summing up the literals of the innermost sub-annotation (starting after the second :subproof) gives a
proof of x−6≤ 0. This inequality is strengthened in the outer sub-annotation by the disequality x−6 6= 0
to x−7 ≤ 0. Adding the remaining literals of the main annotation with their coefficients yields the sum
1≤ 0. This proofs that the conjunction of these literals is unsatisfiable. Hence, the clause containing the
negated literals is valid.

Note that the sub-annotation is necessary in the example above. If we added the sub-annotation
directly into the main annotation, the equality −y+ x−1 = 0 would be eliminated (its factors are 1 and
−1) and the proof would no longer be correct.

5


	Proof Format of SMTInterpol
	Resolution Rule in SMTInterpol
	Conversion Proofs
	Theory Lemmas
	Congruence Proofs
	Linear Arithmetic Proofs


