
Design and Results of the 4th Annual Satisfiability Modulo
Theories Competition (SMT-COMP 2008)

Clark Barrett
Department of Computer Science

New York University

Albert Oliveras
LSI Department

Technical University of Catalonia

Morgan Deters
LSI Department

Technical University of Catalonia

Aaron Stump
Department of Computer Science

University of Iowa

New York University Technical Report: TR2010–931

Abstract

The Satisfiability Modulo Theories Competition (SMT-COMP)is an annual competition aimed at stimulating the
advance of the state-of-the-art techniques and tools developed by the Satisfiability Modulo Theories (SMT) com-
munity. As with the first three editions, SMT-COMP 2008 was held as a satellite event of CAV 2008, held July
7–14, 2008. This report gives an overview of the rules, competition format, benchmarks, participants and results of
SMT-COMP 2008.

1 Introduction

In a wide variety of applications, domain-specific reasoning turns out to be crucial for the success of automated
reasoning tools. A paradigmatic example is the one of arithmetic reasoning: in planning applications, for example, it
comes in handy when forcing that the number of resources consumed at a certain time does not exceed a given limit,
and, similarly, in placement problems it might be helpful when imposing some given distances between certain objects.
In some other applications, like software or hardware verification, what matters is modular arithmetic due to the
finiteness of the numbers representable in a computer, whichmay cause overflows undetectable using plain arithmetic.
But arithmetic reasoning alone does not always suffice, as many applications also require to reason about sets, lists,
queues or even reachability between nodes in a given graph, and, moreover, all this domain-specific information is
typically surrounded by a big amount of boolean connectives.

A successful way to tackle these type of problems is to cast them as Satisfiability Modulo Theories (SMT) for-
mulas, where the goal is to decide the satisfiability of a given formula modulo a background theory, like, e.g. linear
arithmetic, modular arithmetic, sets or lists. SMT allows one to encode these problems in a very natural and compact
way, preventing the formula from blowing up or losing important structural information. After the encoding is done,
one may decide, depending on the problem, to solve it via a reduction to SAT, a translation into a simpler background
theory, combining a SAT solver with several dedicated theory solvers, or even axiomatizing (part of) the theory and
using first-order reasoning methods.

In order to evaluate and facilitate the proliferation of different SMT approaches, algorithms and implementations,
the SMT-LIB initiative (seehttp://www.smtlib.org) was created in 2003, establishing a common standard for
the specification of benchmarks and of background theories,heavily inspired by the TPTP library [6]. Also influenced
by the well-known success of the SAT competition for SAT solvers (seehttp://www.satcompetition.org)
and the CASC competition for first-order theorem provers (see http://www.cs.miami.edu/˜tptp/CASC/),

1

in 2005 the first Satisfiability Modulo Theories Competition(SMT-COMP) was held. As a first immediate conse-
quence, the SMT-LIB format was supported by all state-of-the-art SMT solvers, hence simplifying the task of com-
paring different solvers and avoiding the annoying and complicated task of converting benchmarks between different
formats. Partly due to this common format, the number of collected benchmarks has grown from some 1300 bench-
marks in 2005, to some 40000 for the 2006 competition [1], to some 55000 in 2007 [2], and to over 60000 for the
2008 one.1

But increasing the number of benchmarks in the SMT-LIB library is not the ultimate goal of SMT-COMP. Other
more important goals are to facilitate newcomers to enter the area by creating divisions for which developing an SMT
solver is not very complicated, but also to get closer to the needs of potential users by creating divisions with higher
expressive power or simulating frequent situations that arise in the real user of SMT solvers. In this latter direction,
SMT-COMP 2008 included the division AUFLIA+p, in which benchmarks contained some hints added by users
arising from extra knowledge they have about that particular problem, as it may happen in practice. This variety of
different goals has produced an important increase in the number of divisions in the competition, which started with 7
divisions in 2005 and had 15 divisions in the 2008 edition.

With these and several other goals in mind, SMT-COMP 2008 washeld July 7–14, 2008, as a satellite event of
CAV 2008 in Princeton. The competition was run while CAV 2008was meeting, in the style of the CADE ATP system
competition (CASC) [4, 5]. Solvers were run on a cluster of computers at Washington University in St. Louis, where
a whole new infrastructure had been created to run the competition in 2007 and show intermediate results on a public
screen, drawing the attention of CAV attendees. Finally, public results were announced July 13, in a special CAV
session, and can be accessed at the SMT-COMP web site (http://www.smtcomp.org).

After a brief discussion of what was new in 2008 (Section 2), the rest of this report describes the competition
format: rules, problem divisions, and scripts and execution of solvers (Section 3); the benchmarks, with emphasis
on the new ones, and their selection for the competition (Section 4); the participants (Section 5) and the final results
(Section 6).

2 Novelties in 2008

This section briefly indicates what was new in 2008 from the 2007 competition. Results for 2008 are not described in
this section, but rather in Section 6.

2.1 Rules & format

Binary submissions have always been welcome at SMT-COMP. 2008 marked the first year that SMT-COMP specif-
ically recognizedopen-sourcesolvers during its awards ceremony. While there was no official SMT-COMP track
restricted only to open-source entrants, the best open-source solver in each division (whether it was the overall winner
or not) was mentioned during the awards ceremony.

It was decided for 2008 to retire theeasiestof the SMT-LIB benchmarks. As such, those benchmarks thatall
2007 solvers could solve correctly in less than 30 seconds were generally not considered for selection in the 2008
competition. Full details of benchmark selection for 2008 are discussed in Section 4.4.

During the CAV meeting, the organizers of SMT-COMP determined early that the competition was requiring too
long and would not finish by the end of the conference week as desired. As such, competition divisions were re-ordered
so that competition divisions more “interesting” to the community executed first (new divisions, divisions containing
new entrants, and divisions in which the winner was most uncertain). Further, timeouts on some competition divisions
were lowered to finish the competition more quickly. The primary cause of this increase in runtime over previous years
was the retirement of the very easy benchmarks as described above.

For additional details about the format and rules of SMT-COMP, see Section 3.

1Specifically, these counts include only competition divisions of SMT-LIB, excluding the AUFNIRA combined logic containing non-linear
arithmetic, nor the retired QFUFBV32 bit-vector logic.

2

2.2 Benchmarks

Two new divisions were introduced for the 2008 competition,QF AX (extensional theory of arrays) and QFUFLRA
(the combined theory of uninterpreted functions and linearreal arithmetic). QFAX contained only recategorized
benchmarks from (see Section 4), but was notable this year assome entrants had performed significant work since
2007 on their array solvers. QFUFLRA contained 900 new, randomly-generated benchmarks.

The AUFLIA division for the 2008 competition was split into AUFLIA+p and AUFLIA−p.2 These divisions pull
from the same pool of SMT-LIB benchmarks, the AUFLIA collection. However, in the AUFLIA−p division, SMT-LIB
:pat annotations were stripped from the benchmarks (at the time of benchmark scrambling), and in AUFLIA+p they
were left in for the solvers to exploit. To support this, the benchmark scrambler in use for the 2008 competition (see
Section 3.3) was extended to permit the scrambling of these annotations (where previously it always stripped them).

Initially, the organizers intended to treat AUFLIRA similarly to AUFLIA [+−]p; however, at the time of the com-
petition there were no:pat annotations in AUFLIRA, so such a segregation into two divisions would have served no
purpose.

Many new benchmarks since 2007 (6147 in total) were part of SMT-LIB 2008 competition divisions; see Section 4
for details.

2.3 Participating solvers

For full details on SMT-COMP 2008 participants, see Section5.
There were thirteen entries in SMT-COMP 2008, compared to nine in 2007. There were six new systems submitted

(Alt-Ergo, Beaver, Boolector, CL-Sat, OpenSMT, and SWORD). Two systems that entered SMT-COMP 2007 did not
enter the 2008 competition (ArgoLib and Fx7). The seven common systems between the two years were Barcelogic,
CVC3, MathSat, Sateen, Spear, Yices, and Z3, though many of these had been considerably updated, or rewritten
entirely, since the time of the 2007 competition.

Of these tools, Alt-Ergo, Beaver, CL-Sat, CVC3, and OpenSMTare open-source solvers.

3 Competition format

This section describes the rules, divisions, and executioninfrastructure of the competition.

3.1 Rules

Here we summarize the main rules for the competition. For more details, see the full rules on the SMT-COMP web
site. Competitors did not need to be physically present at the competition to participate or win. Solvers were submitted
to SMT-COMP 2008 by way of the SMT-Exec solver execution service in binary format. The organizers reserved the
right not to accept multiple versions (defined as sharing 50%or more of the source code) of the same solver, and also to
submit their own systems. The winners of each division of the2007 competition were entered to runhors concoursin
their respective divisions of the 2008 competition. Special rules governed the submission ofwrapper tools, which call
a solver not written by the submitter of the wrapper tool. In the end, no wrapper tools were submitted, so these rules
were not exercised. Solvers were always called with a singlebenchmark in SMT-LIB format, version 1.2, presented
on their standard input channels. Solvers were expected to reportunsat , sat , or unknown to classify the formula.
Timeouts and any other behavior were treated asunknown answers.

Each correct answer (within the time limit) was worth1 point. Incorrect answers were penalized with−8 points.
Responses equivalent tounknown were awarded0 points. Four wrong answers in any one division were penalized by
disqualification fromall divisions of the competition. In the event of a tie for the total number of points in a division,
the winner was the tool with the lower CPU time on formulas forwhich it reportedsat or unsat .

2In this report, we refer to the combined AUFLIA divisions as AUFLIA [+−]p.

3

3.2 Problem divisions

The following were the divisions for SMT-COMP 2008. Definitions of the correspondingSMT-LIB logics are available
on the SMT-LIB web site. New in 2008 were an array division, QFAX, and the new combined division QFUFLRA.
Also this year AUFLIA was split into AUFLIA+p (leaving the:pat annotations in benchmarks) and AUFLIA−p

(stripping them).3 These are described in more detail in the section on benchmarks.

• QF UF: uninterpreted functions

• QF RDL: real difference logic

• QF IDL: integer difference logic

• QF BV: Fixed-width bit-vectors

• QF AUFBV: Fixed-width bit-vectors with arrays and uninterpreted functions.

• QF UFIDL: integer difference logic with uninterpreted functions

• QF AX: Arrays with extensionality

• AUFLIA +p: quantified linear integer arithmetic with uninterpreted functions and arrays (with:pat annotations)

• AUFLIA−p: quantified linear integer arithmetic with uninterpreted functions and arrays (no:pat annotations)

• AUFLIRA: quantified linear mixed integer/real arithmetic with uninterpreted functions and arrays

• QF AUFLIA: linear integer arithmetic with uninterpreted functions and arrays

• QF UFLRA: linear real arithmetic with uninterpreted functions

• QF UFLIA: linear integer arithmetic with uninterpreted functions

• QF LRA: linear real arithmetic

• QF LIA: linear integer arithmetic

The first five divisions ran with a timeout of 30 minutes, the final ten with a timeout of 20 minutes.

3.3 Scripts and execution

SMT-COMP ran on theSMT-Execexecution service, a ten-node cluster of identical machines at Washington Uni-
versity in St. Louis each with two 2.4Ghz AMD Opteron 250 processors, 1Mb of cache, and 2Gb of RAM, running
GNU/Linux version 2.6.9-55.EL (from CentOS 4.5). SMT-Execserves as a year-round execution service and exper-
iment platform for SMT solvers; immediately before and during the annual competition, the public service is taken
down to devote the cluster to running the competition. The competition uses the same hardware and software infras-
tructure, in essence running the competition as a public “experiment” consisting of all the competing solvers. One of
these machines served as queue manager. The rest were dedicated to executing solvers on SMT-LIB benchmarks; de-
spite the available hardware capabilities of this cluster,each of the execution hosts was configured for single-processor,
32-bit processing to ensure fairness and to match previously-published competition specifications.

A benchmark scramblerwas used to perturb the benchmarks; it obfuscated the name ofthe benchmark, renamed
all predicate and function symbols, removed comments and annotations (except for:pat annotation in the AUFLIA+p

division), and randomly reordered the arguments of associative-commutative operators. The version of the SMT-LIB
scrambler used for the competition is available for download on the competition web site.

3It was originally intended to split the AUFLIRA division similarly, as specified in the official rules for the 2008 competition, but that division
currently contains no such annotations.

4

Sun Grid Engine4 was used to balance the task load between the nine execution hosts. Each task consisted of all
solvers for the division running a single benchmark on a single execution host. This is similar to the approach used in
the past for SMT-COMP, and kept the execution hosts from being idle during the competition run.

Each solver’s use of resources was monitored by a program called TreeLimitedRun , originally developed for
the CASC competition.TreeLimitedRun was configured to kill the solver if it exceeded the timeout5 or 1.5Gb of
memory use. Theulimit command was not used to enforce these limits because it does not take into consideration
the time and memory consumed by subprocesses. Although the physical amount of memory of each machine is 2Gb,
a limit of 1.5Gb was utilized (and published prior to competition).

SMT-COMP results were stored in a mysql database.6 As soon as a solver terminated with asat, unsat, orunknown
answer, or timed out, a result record was inserted into this database. The competition web site read directly from this
database and thus displayed results as soon as they became available, including newly computed scores. Asynchronous
Javascript (AJAX) was employed to poll periodically for newresults and highlight them on the results pages during
the competition.

4 Benchmarks

As in previous years, one of the main motivations for SMT-COMP 2008 was to collect additional SMT benchmarks.
A total of 6147 new benchmarks over 11 SMT-LIB logics were collected, bringing the total number of benchmarks
for 2008 to 61544.7

4.1 Organization of benchmarks

The benchmarks for the competition were taken from the SMT-LIB library of benchmarks. The benchmarks are
organized by division, family, difficulty, category, and status:

• Benchmarks within each division are divided according tofamilies. A family is a set of benchmarks that are
similar in a significant way and usually come from the same source.

• Thedifficulty of a benchmark is an integer between 0 and 5 inclusive. As in previous years, the difficulty for
a particular benchmark was assigned by running SMT solvers from the 2007 competition with a 10-minute
timeout and using the formula:

difficulty = 5

(

1 −

solved

total

)

.

For new divisions, the difficulty was assigned in a moread hocmanner using whatever information was avail-
able.

• There are four possible categories for a benchmark:check, industrial, random, andcrafted. checkbenchmarks
are hand-crafted to check compliance with basic features ofthe various divisions. The other categories indicate
whether the source of the benchmark is some real application(industrial), hand-crafted (crafted), or randomly
generated (random).

• The status of a benchmark is eithersat, meaning it is satisfiable,unsat, meaning it is unsatisfiable, orunknown
meaning that its satisfiability is unknown. For those benchmarks for which the status was not included as part of
the benchmark, the status was determined by running multiple solvers and checking for agreement. Fortunately,
there has never yet been an issue with an incorrect status during a competition, but to be more careful about this,

4http://www.sun.com/software/gridware/
5The timeout for SMT-COMP 2008 was 30 minutes for divisions QFUF, QF RDL, QF IDL, QF BV, and QFAUFBV, and 20 minutes for

divisions QFUFIDL, QF AX, AUFLIA +p, AUFLIA−p, AUFLIRA, QF AUFLIA, QF UFLRA, QF UFLIA, QF LRA, and QFLIA.
6http://www.mysql.com/
7These numbers count AUFLIA[+−]p benchmarks only once, although internally this same pool ofbenchmarks is used for both AUFLIA

divisions.

5

one possible future focus for the competition is to provideverifiedbenchmarks:i.e. benchmarks whose status
has been determined by a proof-generating SMT solver (e.g.[3]) whose proof has been independently checked.

4.2 New benchmarks for existing divisions

New benchmarks were obtained in almost every division, the only exceptions being QFRDL and QFAUFLIA. The
benchmarks came from a wide variety of research groups. Unlike in previous years, translation into SMT-LIB for-
mat was done by the submitters, not by the competition organizers, indicating that the SMT-LIB standard can be
successfully used by users as well as developers of SMT solvers.

New benchmarks spanned all three categories (random, crafted, and industrial). Industrial benchmarks came from
a number of applications: software verification (uclid/catchconv, sexpr, mathsat/Wisa, nec-smt), hardware verifica-
tion (brummayerbiere2), hybrid systems verification (uclid/tcas), and optimization (miplib). Table 1 lists the new
benchmark families in each division (if any) along with their size (number of benchmarks) and category.

4.3 New divisions

Two new benchmark divisions were added for SMT-COMP 2008: QFAX and QFUFLRA. QF AX was created by
reclassifying those benchmarks from QFAUFLIA that only make use of the theory of arrays. There were 1485 such
benchmarks and this constituted the entirety of the QFAX division. As shown in Table 1, QFUFLRA was comprised
of new random benchmarks.

4.4 Selection of competition benchmarks

The benchmark selection algorithm was close to the one used in 2007. It was updated only to “retire” some particularly
easy benchmarks. The algorithm is summarized below.

1. First, each benchmark is categorized as easy-sat, easy-unsat, hard-sat, or hard-unsat as follows: a benchmark is
easyif it has difficulty 2 or less andhard otherwise; a benchmark issator unsatbased on itsstatusattribute. Of
course,unknown-status benchmarks are never eligible for inclusion.

2. All benchmarks in thecheckcategory are automatically included.

3. New in 2008:The most difficult 300 non-check non-unknown benchmarks in each division are always included,
together with all benchmarks on which at least one 2007 solver required more than 30 seconds.This had the
effect of retiring “very easy” benchmarks that were solved by every 2007 solver (and therefore have difficulty 0)
and that all 2007 solvers could solve in less than 30 seconds,unlessdoing so reduced the pool of benchmarks
for the division to less than 300.

4. The remaining benchmarks in each division are put into a selection pool as follows: for each family, if the
family contains more than 200 benchmarks, then 200 benchmarks are put into the pool. These benchmarks
are randomly selected except that a balance of easy-sat, easy-unsat, hard-sat, and hard-unsat is maintained if
possible. For families with fewer than 200 benchmarks, all of the benchmarks from the family are put into the
pool.

5. Slots are allocated for 200 benchmarks to be selected fromthe pool in each division as follows: 85% slots are
for industrial benchmarks; 10% are for crafted; and 5% are for random. If there are not enough in one category,
then the balance is provided from the other categories.

6. In order to fill the allocated slots, the pool of benchmarkscreated in steps 2 and 3 is consulted and partitioned
according to category (i.e. industrial, random, crafted). An attempt is made to randomly fill the allocated slots
for each category with the same number of benchmarks from each sub-category (i.e.easy-sat, easy-unsat, hard-
sat, or hard-unsat). If there are not enough in a sub-category, then its allotment is divided among the other
sub-categories.

6

Division Benchmark family # new benchmarks Benchmark category
QF UF eq diamond 100 crafted

total 100 –
QF IDL parity 248 crafted

schedulingIDL 280 crafted
total 528 –

QF BV brummayerbiere 13 crafted
brummayerbiere2 65 industrial
uclid/catchconv 414 industrial
uclid/tcas 2 industrial
total 494 –

QF AUFBV brummayerbiere 293 crafted
total 293 –

QF UFIDL bcnscheduling 13 crafted
mathsat/EufLaArithmetic/vhard 19 crafted
total 32 –

AUFLIA [+−]p sexpr 32 industrial
total 32 –

AUFLIRA peter 198 crafted
total 198 –

QF UFLRA mathsat/RandomCoupled 400 random
mathsat/RandomDecoupled 500 random
total 900 –

QF UFLIA mathsat/EufLaArithmetic/hard 17 crafted
mathsat/EufLaArithmetic/medium 16 crafted
mathsat/Hash 198 crafted
mathsat/Wisa 223 industrial
total 454 –

QF LRA miplib 42 industrial
total 42 –

QF LIA nec-smt/large/bftpdlogin 361 industrial
nec-smt/large/checkpass 242 industrial
nec-smt/large/checkpasspwd 642 industrial
nec-smt/large/getoption 20 industrial
nec-smt/large/getoptiondirectories 65 industrial
nec-smt/large/getoptiongroup 356 industrial
nec-smt/large/getoptionuser 259 industrial
nec-smt/large/handlersigchld 130 industrial
nec-smt/large/intfrom list 173 industrial
nec-smt/large/mygetpwnam 8 industrial
nec-smt/large/useris in group 125 industrial
nec-smt/med/checkpasspwd 215 industrial
nec-smt/med/configreadline 28 industrial
nec-smt/med/getoptiongroup 2 industrial
nec-smt/med/intfrom list 111 industrial
nec-smt/med/mygetpwnam 2 industrial
nec-smt/med/printfile 6 industrial
nec-smt/small/checkpasspwd 14 industrial
nec-smt/small/configreadline 2 industrial
nec-smt/small/intfrom list 15 industrial
nec-smt/small/printfile 4 industrial
rings 294 crafted
total 3074 –

all new benchmarks 6147 –

Table 1: New Benchmarks

7

5 Participants

There were thirteen entries in SMT-COMP 2008. With respect to SMT-COMP 2007, six new systems were submitted
(Alt-Ergo, Beaver, Boolector, CL-Sat, OpenSMT, and SWORD)and two systems participating in 2007 did not enter
SMT-COMP 2008 (ArgoLib and Fx7). A brief description of eachsystem follows. For more detailed information,
including references to papers describing concrete algorithms and techniques, one can access the full system descrip-
tions available at the SMT-COMP 2008 web site. The binaries run during the competition for all solvers are also
available there.

Alt-Ergo. Submitted by Sylvain Conchon (LRI, Université Paris-Sud and INRIA SaclayIle-de-France) and Evelyne
Contejean (LRI, CNRS, and INRIA SaclayIle-de-France), Alt-Ergo is an Ocaml implementation of a generic con-
gruence closure algorithm CC(X) that provides for a method of theory combination similar toShostak’s approach.
Alt-Ergo includes its own SAT engine.
Problem divisions: AUFLIA+p, AUFLIA−p, AUFLIRA.

Barcelogic 1.3. Submitted by Miquel Bofill (Universitat de Girona) and Morgan Deters, Germain Faure, Robert
Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-Carbonell, and Albert Rubio (Technical University of Catalonia in
Barcelona), Barcelogic is a DPLL(T) solver supporting arithmetic and arrays.
Problem divisions: QFUF, QF RDL, QF IDL, QF UFIDL, QF AX, QF AUFLIA, QF UFLRA, QF UFLIA, QF LRA,
QF LIA.

Beaver 1.0. Submitted by Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia (UC Berkeley), Beaver is an SMT
solver for the theory of quantifier-free finite-precision bit-vector arithmetic. Beaver operates by performing a series
of rewrites and simplifications that transform the startingbit-vector arithmetic formula into a Boolean circuit and then
into a Boolean satisfiability (SAT) problem in CNF.
Problem divisions: QFBV.

Boolector 0.4. Submitted by Robert Brummayer and Armin Biere (Johannes Kepler University, Linz, Austria),
Boolector is a decision procedure for the quantifier-free theory of Bit-vectors, and the quantifier-free extensional
theory of arrays with bit-vectors and uninterpreted functions. Additionally, Boolector can be used as a model checker
for word-level safety properties [4]. Boolector is implemented in pure C; Picosat is used as the SAT solver.
Problem divisions: QFBV, QF AUFBV.

clsat 0.17f. Submitted by Duckki Oe, Timothy Simpson, Aaron Stump, and Terry Tidwell (Washington University in
St. Louis), the clsat solver integrates a clauselearning SAT solver with a standard graphbased IDL solver. Started as a
class project, it incorporates modern SAT techniques, including watched literals, failuredriven assertions, and conflict
clause simplification.
Problem divisions: QFIDL.

CVC3 1.5. CVC3 is a joint project of New York University and the University of Iowa. The project leaders are Clark
Barrett (NYU) and Cesare Tinelli (University of Iowa). Codecontributions since last year have been made by Clark
Barrett, Yeting Ge (NYU), Dejan Jovanovic (NYU), AlexanderFuchs (Iowa), Lorenzo Platania (University of Genoa),
and Darren Kelley (NYU).
Problem divisions:all.

MathSAT 4.2. MathSAT was submitted by Alessandro Cimatti and Anders Franzén from FBK-IRST, Trento, and
Alberto Griggio and Roberto Sebastiani from University of Trento, Italy. MathSAT is a C++ implementation of the
standard “online” lazy integration schema used in many SMT tools. New this year are support for bit-vectors, an
improved integer linear arithmetic solver, and support fordelayed theory combination.
Problem divisions: QFUF, QF RDL, QF IDL, QF BV, QF UFIDL, QF UFLRA, QF UFLIA, QF LRA, QF LIA.

8

OpenSMT 0.1. Submitted by Roberto Bruttomesso and Natasha Sharygina (Università della Svizzera Italiana,
Lugano, Switzerland), OpenSMT is a small and open-source SMT solver, written in C++, which provides a basic
infrastructure for helping non-experts to develop theory-solvers without having to start from scratch. OpenSMT in-
cludes a parser for SMT-LIB language, a state- of-the-art SAT-Solver, and a core solver for QF UF logic. An empty,
template theory-solver is provided, to facilitate the development of solvers for other logics.
Problem divisions: QFUF.

Sateen 2.1.1. Sateen was submitted by Hyondeuk Kim (University of Colorado at Boulder), Hoonsang Jin (Cadence
Design Systems), and Fabio Somenzi (Colorado at Boulder). It is a satisfiability solver that combines a propositional
reasoning engine with theory-specific procedures. It uses the lazy approach that relies on incremental refinements of a
propositional abstraction of the given formula during the enumeration of its solutions.
Problem divisions: QFRDL, QF IDL.

Spear. Submitted by Domagoj Babić, Spear is a theorem prover for bit-vector arithmetic. It was designed chiefly for
software verification, but also for other industrial problems, like bounded hardware modelchecking.
Problem divisions: QFBV.

SWORD v0.2. Submitted by Robert Wille, André Sülflow, and Rolf Drechsler (University of Bremen), SWORD is
a SAT-like solver that facilitates word level information.The main idea behind SWORD is based on the following
observation: Current SAT solvers perform very well on instances with a large number of logic operations. But when
more complex functions like arithmetic units are considered, the performance degrades with increasing data-path
width. In contrast, pure word level approaches handlee.g.arithmetic operations very fast but suffer from complexity
problems when irregularities in the word level structure (e.g.bit slicing) occur. SWORD uses MiniSat as a SAT
engine.
Problem divisions: QFBV.

Yices2 (proto c). Submitted by Bruno Dutertre (SRI International, Menlo Park, California), this version of Yices 2
is a preliminary prototype of the successor to the Yices 1 SMTsolver. This new tool will address several limitations of
Yices 1, including typechecking issues and limited functionality of the Yices API. The new solver supports a simpler
specification language that can be statically typechecked and it provides a full API to access all functions of the solver.
It is intended to offer similar or better performance than Yices 1 on most benchmarks, while being more modular,
extensible, and maintain- able.
Problem divisions: QFUF, QF RDL, QF IDL, QF LRA.

Z3.2α. Submitted by Leonardo de Moura and Nikolaj Bjørner (Microsoft Research, Redmond), Z3.2α is a new
version of the Z3 solver supporting linear real and integer arithmetic, fixed-size bit-vectors, extensional arrays, unin-
terpreted functions, and quantifiers. It can read problems in SMT-LIB and Simplify formats.
Problem divisions:all.

6 Results

The results for each division are summarized in Figures 1 through 30 starting on page 12. More detailed results are
available on the SMT-COMP web site,http://www.smtcomp.org/ .

Raw results are reported for each division. Further, each division has two types of associated graphs: a “cactus”
graph and a scatter graph. The cactus graph sorts a solver’s time on all its correctly-solved benchmarks in the division
and plots the solver’s cumulative time on the benchmarks. Thus the solver that reaches the furthest right on the graph
wins (assuming no wrong answers); for solvers tied by this measure, the lower of all such solvers (least total time)
wins the division.

The scatter plot shows a benchmark-by-benchmarkcomparison between the winner and runner-up in each division.
This demonstrates how advanced the winning solver is over its nearest competitor. For divisions that ran last year, a

9

second scatter plot compares last year’s winner with this year’s winner on this year’s competition benchmarks; this
demonstrates improvement (or lack thereof) over last year’s tools. In the scatter plots,⊲ representssat instances, and⊳

representsunsatinstances. For interactive versions of these scatter plotsthat color-code benchmark families for easy
correlation, please view the division results pages athttp://www.smtcomp.org/ .

6.1 Description of anomalous and surprising results

This year, there was significant improvement over last year’s winner in the QFUF, QF BV, QF AUFBV, AUFLIRA,
and QFLIA divisions. There was not so much improvement in QFRDL, QF IDL, and QFLRA. There was not much
improvement (but also not muchroom for improvement) in QFUFIDL, AUFLIA +p, AUFLIA−p, QF AUFLIA,
QF UFLIA. QF AX and QFUFLRA were new in 2008; there was thus no “winner” from the 2007 competition to
which to compare the results.

Competing in the quantified competition divisions AUFLIA[+−]p and AUFLIRA, Alt-Ergo demonstrated incom-
pleteness, incorrectly reporting assatisfiable17 unsatisfiable instances of AUFLIA+p, 14 unsatisfiable instances of
AUFLIA-p, and 52 unsatisfiable instances of AUFLIRA. It was therefore disqualified from the competition as per the
rules. (It is listed separately, in thehors concourssection of the results, for that reason). For purposes of comparison,
an artificial “revision” of Alt-Ergo (appearing as “Alt-Ergo (revised)” corrects this incompleteness error.8 In this way
it achieves a positive result, but as this is an after-deadline entry it ranhors concoursas well.

6.2 Description ofunknown results

Unknownresults from solvers arise for different reasons. A solver may reportunknownexplicitly, or fail to give a
propersator unsatresponse. In some cases, it is possible to tell the cause of theunknownresponse—the output wasn’t
sat or unsatbut rather an assertion failure, or a C++ badalloc exception escaping the program’s top-level. In other
situations, we cannot discern the cause—an explicit response ofunknownmay have resulted from a bug or out-of-
memory situation which is caught internally, thereby leaving no trace of the cause). In this section we try to detail the
causes, when possible, ofunknownresults, based on the detailed solver output logs collectedduring the competition.

• QF IDL: The clsat solver failed to parse the twobignumbenchmarks, categorizedcheck,citing integer overflow.

• QF BV: Beaver failed on 20 benchmarks in thebrummayerbiere2family, trying to open a nonexistent file
(presumably which existed on a development machine). Z3 andMathSAT failed on a few of thebrummayer-
biere/countbitsbenchmarks (presumably running out of memory). SWORD failed with a segmentation fault
onstp/testcase15.stp.smtandbrummayerbiere/countbits1024.smt. This year’s Spear failed on lots of thebrum-
mayerbierebenchmarks as well as some others (45 parse errors, “Resources exceeded” onstp/testcase15.stp.smt,
and 8 explicit “unknown” responses were observed); last year’s Spear (the 2007 winner in this division) failed
on only a subset of these (the same 45 parse errors, out of memory on stp/testcase15.stp.smt); CVC3 fails on
various benchmarks (2 due to assertion failures, 12 out of memory).

• QF AUFBV: Z3 runs out of memory on a few (the old Z3 failed on 4, and the newZ3.2 is slightly better, running
out of memory on only 3); CVC3 failed on many (segmentation fault on 4, perhaps out-of-memory related, and
the rest clear memory exhaustion).

• AUFLIA +p: Z3.2 gave no response onmisc/set14.smtormisc/set9.smt,and ran out of memory onmisc/set19.smt.
Alt-Ergo ran out of memory onmisc/set2.smt.All other “unknown” results in this division were due to an ex-
plicit “unknown” reported by the solvers.

• AUFLIA −p: The explanation here is exactly the same as for AUFLIA+p. The benchmarks selected for
AUFLIA−p were the same for small benchmark families due to the way benchmark selection is performed

8It was “artificial” in that it wasn’t a submission that actually ran in competition, but rather an adjustment of the data collected from the
disqualified entrant by changing allsatisfiableresponses by the solver tounknownresponses; it thus simulates how a revised Alt-Ergo may have
placed in competition if it had a wrapper script that changedsat to unknown. The time differences reported in the results are due to a difference in
how times are scored:unknownandtimeoutresults are not counted against a solver’s time, but incorrect answers are.

10

for SMT-COMP. However, there were some differences in the benchmark make-up for these two similar divi-
sions, and that explains the discrepancies. In particular,Z3 reported one additional (explicit) “unknown” on
piVC/piVC849b63.smt,a benchmark not present in AUFLIA+p.

• AUFLIRA: All unknownreponses in AUFLIRA were explicitly-reported unknowns; there were no crashes
or memory-outs in this division. Z3.2 gave 1 explicit “unknown” response onmisc/set9.smt;CVC3 1.5 gave
46 explicit “unknown” responses in several of thenasabenchmark families, and also in themisc andpeter
families; CVC3 1.2 (the 2007 winner) reported fewer “unknowns” (34), but did so across the same benchmark
families. Alt-Ergo gave no “unknown” responses in AUFLIRA.However, it reported 83 assatisfiable,52 of
which were in factunsatisfiable(causing disqualification of the solver from the competition). In the revised
Alt-Ergo numbers, which change all satisfiable responses ofthe solver to explicit “unknowns”, leading to the
figure of 83 in that row.

• various: Besides those above, CVC3 gave 82 unknown answers in QFAX, QF AUFLIA, QF UFLRA, QF LRA,
and QFLIA. These were due to memory exhaustion (in 42 cases), segmentation faults (4), and assertion fail-
ures (36).

It is important to note in the above analyses that the solver binaries were treated as black boxes; we made no
attempt to determine if a solver internally caught errors (such as segfaults or C++std::bad alloc exceptions) and
dutifully reported “unknown” instead of (observably) crashing.

Acknowledgements

SMT-COMP would not have been possible without the invaluable support, feedback, and participation of the entire
SMT community, with special thanks to Cesare Tinelli and Silvio Ranise, the leaders of the SMT-LIB initiative.
The authors at Washington University would like to acknowledge the technical support of Mark Bober of Washington
University’s Computing Technology Services in ordering and helping operate the cluster. Thanks also to the organizers
of CAV 2008 for their support of SMT-COMP 2008 as a satellite event. Finally, the organizers wish to acknowledge
the support of the U.S. National Science Foundation, under contract CNS–0551697, for SMT-COMP 2007 and 2008.

References

[1] Clark Barrett, Leonardo de Moura, and Aaron Stump. Design and results of the second satisfiability modulo
theories competition (SMT-COMP 2006).Formal Methods in System Design, 2007.

[2] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and results of the 3rd annual satisfi-
ability modulo theories competition (SMT-COMP 2007).International Journal on Artificial Intelligence Tools,
17(4):569–606, 2008.

[3] Sean McLaughlin, Clark Barrett, and Yeting Ge. Cooperating theorem provers: A case study combining HOL-
Light and CVC Lite. In Alessandro Armando and Alessandro Cimatti, editors,Proceedings of the3rd Workshop
on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR ’05), volume 144(2) ofElectronic Notes
in Theoretical Computer Science, pages 43–51. Elsevier, January 2006. Edinburgh, Scotland.

[4] F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC.AI Communications, 15(2-3):79–90,
2002.

[5] G. Sutcliffe and C. Suttner. The State of CASC.AI Communications, 19(1):35–48, 2006.

[6] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library:CNF Release v1.2.1.Journal of Automated Reasoning,
21(2):177–203, 1998.

11

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Yices2 (proto c)
Z3.2

MathSAT-4.2
Barcelogic 1.3

Z3 0.1, 2007 winner
OpenSMT 0.1

CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Yices2 (proto c) 196 7299.0 187 9 0 4 0
Z3.2 194 7653.5 185 9 0 6 0
MathSAT-4.2 181 18927.1 172 9 0 19 0
Barcelogic 1.3 118 15384.2 109 9 0 82 0
OpenSMT 0.1 85 25941.8 76 9 0 115 0
CVC3-1.5 77 49914.8 69 8 0 123 0
Z3 0.1, 2007 winner 117 20936.8 108 9 0 83 0

Figure 1: Results in the QFUF division.

12

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Y
ic

es
2

(p
ro

to
 c

)
(w

in
ne

r)

Z3.2 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Y
ic

es
2

(p
ro

to
 c

)
(w

in
ne

r)

Z3 0.1 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 2: Benchmark comparisons of (above) the top two contenders in the QFUF division this year, and (below) last
year’s and this year’s winners.

13

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
Yices2 (proto c)

MathSAT-4.2
Yices 1.0.10, 2007 winner

sateen-2.1.1
Barcelogic 1.3

CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 169 5740.3 112 57 0 1 0
Yices2 (proto c) 169 8141.5 112 57 0 1 0
MathSAT-4.2 167 8324.9 112 55 0 3 0
sateen-2.1.1 167 9705.3 111 56 0 3 0
Barcelogic 1.3 166 8967.8 111 55 0 4 0
CVC3-1.5 73 21045.4 57 16 0 97 0
Yices 1.0.10, 2007 winner 167 8760.6 111 56 0 3 0

Figure 3: Results in the QFRDL division.

14

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Yices2 (proto c) (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Yices 1.0.10 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 4: Benchmark comparisons of (above) the top two contenders in the QFRDL division this year, and (below) last
year’s and this year’s winners.

15

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Barcelogic 1.3
Z3.2

sateen-2.1.1
Yices2 (proto c)

Z3 0.1, 2007 winner
MathSAT-4.2

clsat 0.17f
CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Barcelogic 1.3 140 14895.1 78 62 0 63 0
Z3.2 139 15359.4 76 63 0 64 0
sateen-2.1.1 132 19487.0 72 60 0 71 0
Yices2 (proto c) 130 12854.4 67 63 0 73 0
MathSAT-4.2 129 20095.2 68 61 0 74 0
clsat 0.17f 79 33050.8 47 32 2 122 0
CVC3-1.5 49 8339.2 34 15 0 154 0
Z3 0.1, 2007 winner 130 18436.8 70 60 0 73 0

Figure 5: Results in the QFIDL division.

16

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

B
ar

ce
lo

gi
c

1.
3

(w
in

ne
r)

Z3.2 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

B
ar

ce
lo

gi
c

1.
3

(w
in

ne
r)

Z3 0.1 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 6: Benchmark comparisons of (above) the top two contenders in the QFIDL division this year, and (below) last
year’s and this year’s winners.

17

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Boolector
Z3.2

Beaver-1.0
MathSAT-4.2
SWORD v0.2

Spear
CVC3-1.5

Spear v1.9 (fh-1-2), 2007 winner

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Boolector 192 3502.5 85 107 0 8 0
Z3.2 174 10971.2 72 102 4 22 0
Beaver-1.0 168 7186.4 67 101 20 12 0
MathSAT-4.2 168 10034.9 62 106 2 30 0
SWORD v0.2 146 3630.3 47 99 2 52 0
Spear 146 28801.1 49 97 54 0 0
CVC3-1.5 137 61943.0 41 96 14 49 0
Spear v1.9 (fh-1-2), 2007 winner 100 17289.3 47 53 46 54 0

Figure 7: Results in the QFBV division.

18

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

B
oo

le
ct

or
 (

w
in

ne
r)

Z3.2 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

B
oo

le
ct

or
 (

w
in

ne
r)

Spear v1.9 (fh-1-2) (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 8: Benchmark comparisons of (above) the top two contenders in the QFBV division this year, and (below) last
year’s and this year’s winners.

19

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Boolector
Z3.2

Z3 0.1, 2007 winner
CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Boolector 180 4752.8 88 92 0 20 0
Z3.2 164 16650.4 79 85 3 33 0
CVC3-1.5 77 7728.9 47 30 69 54 0
Z3 0.1, 2007 winner 116 6589.6 60 56 4 80 0

Figure 9: Results in the QFAUFBV division.

20

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

B
oo

le
ct

or
 (

w
in

ne
r)

Z3.2 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

B
oo

le
ct

or
 (

w
in

ne
r)

Z3 0.1 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 10: Benchmark comparisons of (above) the top two contenders in the QFAUFBV division this year, and
(below) last year’s and this year’s winners.

21

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
Yices 1.0.10, 2007 winner

Barcelogic 1.3
MathSAT-4.2

CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 198 2334.4 149 49 0 5 0
Barcelogic 1.3 197 3385.5 148 49 0 6 0
MathSAT-4.2 194 8210.2 146 48 0 9 0
CVC3-1.5 127 10140.5 84 43 0 76 0
Yices 1.0.10, 2007 winner 197 1173.3 148 49 0 6 0

Figure 11: Results in the QFUFIDL division.

22

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Barcelogic 1.3 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Yices 1.0.10 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 12: Benchmark comparisons of (above) the top two contenders in the QFUFIDL division this year, and
(below) last year’s and this year’s winners.

23

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Barcelogic 1.3
Z3.2

CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Barcelogic 1.3 200 13.5 100 100 0 0 0
Z3.2 200 17.3 100 100 0 0 0
CVC3-1.5 195 2820.2 95 100 4 1 0

Figure 13: Results in the QFAX division.

24

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

B
ar

ce
lo

gi
c

1.
3

(w
in

ne
r)

Z3.2 (runner up)

<= 0.1

2x

2x
W

/U
/T

Figure 14: A benchmark comparison of the top two contenders in the QFAX division. This division is new in this
year’s competition.

25

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
Z3 0.1, 2007 winner

CVC3-1.5
Alt-Ergo

Alt-Ergo (revised)

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 194 20.9 192 2 5 2 0
CVC3-1.5 185 157.4 185 0 9 7 0
Z3 0.1, 2007 winner 191 95.2 191 0 5 5 0
Alt-Ergo (revised) 44 20.8 44 0 30 127 0
Alt-Ergo disqualified -86 21.0 44 (17) 6 7 127 17

Figure 15: Results in the AUFLIA+p division.

26

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

CVC3-1.5 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Z3 0.1 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 16: Benchmark comparisons of (above) the top two contenders in the AUFLIA+p division this year, and
(below) last year’s and this year’s winners.

27

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
Z3 0.1, 2007 winner

CVC3-1.5
Alt-Ergo

Alt-Ergo (revised)

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 193 19.4 191 2 6 2 0
CVC3-1.5 161 1721.0 161 0 9 31 0
Z3 0.1, 2007 winner 191 34.4 191 0 5 5 0
Alt-Ergo (revised) 52 1858.1 52 0 24 125 0
Alt-Ergo disqualified -54 1858.1 52 (14) 6 4 125 14

Figure 17: Results in the AUFLIA−p division.

28

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

CVC3-1.5 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Z3 0.1 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 18: Benchmark comparisons of (above) the top two contenders in the AUFLIA−p division this year, and
(below) last year’s and this year’s winners.

29

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
CVC3-1.5

CVC3 1.2, 2007 winner
Alt-Ergo

Alt-Ergo (revised)

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 198 1018.0 168 30 1 1 0
CVC3-1.5 147 5275.6 147 0 46 7 0
CVC3 1.2, 2007 winner 147 7619.1 147 0 34 19 0
Alt-Ergo (revised) 68 7334.5 68 0 83 49 0
Alt-Ergo disqualified -317 7461.3 68 (52) 31 0 49 52

Figure 19: Results in the AUFLIRA division.

30

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

CVC3-1.5 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

CVC3 1.2 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 20: Benchmark comparisons of (above) the top two contenders in the AUFLIRA division this year, and (be-
low) last year’s and this year’s winners.

31

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
Yices 1.0.10, 2007 winner

Barcelogic 1.3
CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 206 195.3 107 99 0 0 0
Barcelogic 1.3 206 5572.5 107 99 0 0 0
CVC3-1.5 157 9930.7 80 77 35 14 0
Yices 1.0.10, 2007 winner 206 585.8 107 99 0 0 0

Figure 21: Results in the QFAUFLIA division.

32

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Barcelogic 1.3 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Yices 1.0.10 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 22: Benchmark comparisons of (above) the top two contenders in the QFAUFLIA division this year, and
(below) last year’s and this year’s winners.

33

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
MathSAT-4.2

Barcelogic 1.3
CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 200 15.9 82 118 0 0 0
MathSAT-4.2 200 106.1 82 118 0 0 0
Barcelogic 1.3 200 1630.2 82 118 0 0 0
CVC3-1.5 184 4941.7 80 104 11 5 0

Figure 23: Results in the QFUFLRA division.

34

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

MathSAT-4.2 (runner up)

<= 0.1

2x

2x
W

/U
/T

Figure 24: A benchmark comparison of the top two contenders in the QFUFLRA division. This division is new in
this year’s competition.

35

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Yices 1.0.10, 2007 winner
Z3.2

MathSAT-4.2
Barcelogic 1.3

CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 202 201.0 63 139 0 0 0
MathSAT-4.2 202 836.6 63 139 0 0 0
Barcelogic 1.3 202 3353.5 63 139 0 0 0
CVC3-1.5 161 4793.3 56 105 0 41 0
Yices 1.0.10, 2007 winner 202 154.7 63 139 0 0 0

Figure 25: Results in the QFUFLIA division.

36

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

MathSAT-4.2 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Yices 1.0.10 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 26: Benchmark comparisons of (above) the top two contenders in the QFUFLIA division this year, and
(below) last year’s and this year’s winners.

37

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Yices2 (proto c)
Z3.2

Yices 1.0.10, 2007 winner
MathSAT-4.2

Barcelogic 1.3
CVC3-1.5

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Yices2 (proto c) 184 4899.1 90 94 0 18 0
Z3.2 183 3817.6 91 92 0 19 0
MathSAT-4.2 182 6941.6 91 91 0 20 0
Barcelogic 1.3 182 11316.7 90 92 0 20 0
CVC3-1.5 68 14121.1 25 43 14 120 0
Yices 1.0.10, 2007 winner 182 5214.5 90 92 0 20 0

Figure 27: Results in the QFLRA division.

38

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Y
ic

es
2

(p
ro

to
 c

)
(w

in
ne

r)

Z3.2 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Y
ic

es
2

(p
ro

to
 c

)
(w

in
ne

r)

Yices 1.0.10 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 28: Benchmark comparisons of (above) the top two contenders in the QFLRA division this year, and (be-
low) last year’s and this year’s winners.

39

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Z3.2
MathSAT-4.2

Yices 1.0.10, 2007 winner
CVC3-1.5

Barcelogic 1.3

Solver Score Time (s) Unsat Sat Unknown Timeout Wrong
Z3.2 203 5104.5 112 91 0 2 0
MathSAT-4.2 192 55673.3 107 85 0 13 0
CVC3-1.5 124 36294.4 64 60 18 63 0
Barcelogic 1.3 69 11636.0 46 23 0 136 0
Yices 1.0.10, 2007 winner 159 47754.8 81 78 0 46 0

Figure 29: Results in the QFLIA division.

40

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

MathSAT-4.2 (runner up)

<= 0.1

2x

2x

W
/U

/T

1

10

100

1k

1.8k

W/U/T

1 10 100 1k 1.8k

Z
3.

2
(w

in
ne

r)

Yices 1.0.10 (2007 winner)

<= 0.1

2x

2x

W
/U

/T

Figure 30: Benchmark comparisons of (above) the top two contenders in the QFLIA division this year, and (be-
low) last year’s and this year’s winners.

41

